intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử THPT QG môn Toán năm 2019 - PTDTNT Tỉnh Phú Yên

Chia sẻ: Tỉ Phong | Ngày: | Loại File: PDF | Số trang:18

13
lượt xem
0
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Các bạn tham khảo Đề thi thử THPT QG môn Toán năm 2019 - PTDTNT Tỉnh Phú Yên sau đây để biết được cấu trúc đề thi cũng như những nội dung chính được đề cập trong đề thi để từ đó có kế hoạch học tập và ôn thi một cách hiệu quả hơn.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử THPT QG môn Toán năm 2019 - PTDTNT Tỉnh Phú Yên

  1. SỞ GIÁO DỤC & ĐÀO TẠO PHÚ YÊN ĐỀ THI THỬ THPT QUỐC GIA NĂM 2019 TRƯỜNG PTDTNT TỈNH BÀI THI: TOÁN Thời gian làm bài 90 phút (không kể thời gian giao đề) (Đề gồm 7 trang) Mã đề 122 (Thí sinh không được sử dụng tài liệu) Câu 1: Trong không gian cho đường thẳng  và điểm O. Qua O có mấy đường thẳng vuông góc với  ? A. 1 B. 3 C. Vô số D. 2 Câu 2: Tính đạo hàm của hàm số y   x 7  2x 5  3x 3 . A. y   x 6  2x 4  3x 2 B. y  7x 6  10x 4  6x 2 C. y  7x 6  10x 4  6x 2 . D. y  7x 6  10x 4  9x 2 . 8n 5  2n 3  1 Câu 3: Tìm I  lim . 4n 5  2n 2  1 A. I  2 B. I  8 C. I  1 D. I  4  Câu 4: Trong mặt phẳng tọa độ Oxy , cho véctơ v   3;5 . Tìm ảnh của điểm A 1; 2  qua  phép tịnh tiến theo vectơ v. A. A '  4; 3 B. A '  2;3  C. A '  4;3  D. A '  2;7  Câu 5: Tính thể tích khối tròn xoay được tạo thành khi quay hình phẳng (H) được giới hạn bởi các đường y  f  x  , trục Ox và hai đường thẳng x  a, x  b xung quanh trục Ox. b b b b A.  f 2  x  dx B.  f 2  x  dx C.  f  x  dx D. 2  f 2  x  dx a a a a Câu 6: Nguyên hàm của hàm số f  x   cos3x là: 1 1 A. 3sin 3x  C B.  sin 3x  C C.  sin 3x  C D. sin 3x  C 3 3 Câu 7: Hàm số y  x 4  2x 2  1 có bao nhiêu điểm cực trị? A. 1 B. 0 C. 3 D. 2 Câu 8: Số nào trong các số sau lớn hơn 1?
  2. 1 1 A. log 0,5 B. log 0,2 125 C. log 1 36 D. log 0,5 8 6 2 Câu 9: Tổng số đỉnh, số cạnh và số mặt của hình lập phương là: A. 16 B. 26 C. 8 D. 24 Câu 10: Từ các chữ số 1; 2; 3 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau đôi một? A. 8 B. 6 C. 9 D. 3 Câu 11: Cho hàm số y  f  x  có bảng biến thiên như hình dưới đây. Khẳng định nào sau đây là đúng? x  2 4  y' + 0 - 0 + y 3   2 A. Hàm số đạt cực tiểu tại x  2 B. Hàm số đạt cực tiểu tại x  4 C. Hàm số đạt cực tiểu tại x  2 D. Hàm số đạt cực đại tại x  3 Câu 12: Cho hình chóp tam giác S.ABC với SA, SB, SC đôi một vuông góc và SA  SB  SC  a. Tính thể tích của khối chóp S. ABC. 1 3 1 3 1 3 2 3 A. a B. a C. a D. a 3 2 6 3 Câu 13: Cho lăng trụ tam giác đều ABC.A ' B 'C ' có tất cả các cạnh bằng 2a. Tính thể tích khối lăng trụ ABC.A ' B 'C '. a3 3 a3 3 A. a 3 3 B. C. D. 2a 3 3 4 2 3 Câu 14: Phương trình cos x   có tập nghiệm là 2     5        A.    k, k    B.    k2, k    C.    k, k    D.    k2 , k     6   6   3   3  1 Câu 15: Tập xác định của hàm số y   log 3  x  4  là 2 x  4x  5 A. D   4;   B. D   4;   C. D   4;5    5;   D. D   4;  
  3.    Câu 16: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y  s inx trên đoạn   ;  lần lượt  2 3 là 1 3 3 3 2 3 A.  ;  B.  ; 1 C.  ; 2 D.  ; 2 2 2 2 2 2 Câu 17: Tính đạo hàm của hàm số y   x 2  2x  2  ex . A. y '   x 2  2  e x B. y '  x 2e x C. y '   2x  2  e x D. y '  2xe x  Câu 18: Trong không gian với hệ trục tọa độ Oxyz, cho véctơ a  1; 2;3 . Tìm tọa độ của      véctơ b biết rằng véctơ b ngược hướng với véctơ a và b  2 a     A. b   2; 2;3 B. b   2; 4;6  C. b   2;4; 6  D. b   2; 2;3 x 4 10x 3 Câu 19: Hàm số y    2x 2  16x  15 đồng biến trên khoảng nào sau đây? 2 3 A.  2; 4  B.  2;   C.  4;  D.  ; 1  4 Câu 20: Tính tích phân I   tan 2 x dx . 0   A. I  1  B. I  2 C. I  ln 2 D. I  4 12 Câu 21: Cho hàm số y  ax 3  bx 2  cx  d. Hàm số luôn đồng biến trên  khi và chỉ khi a  b  0, c  0 a  b  0, c  0 a  b  0, c  0 A.  2 B. a  0, b 2  3ac  0 C.  2 D.  2 a  0, b  3ac  0 a  0, b  3ac  0 a  0, b  4ac  0 Câu 22: Hình lập phương ABCD.A ' B ' C ' D ' cạnh a. Tính thể tích khối tứ diện ACB'D'. a3 a3 a3 a3 A. B. C. D. 3 2 6 4 Câu 23: Số 6303268125 có bao nhiêu ước số nguyên? A. 420 B. 630 C. 240 D. 720 1 1 Câu 24: Cho cấp số nhân  u n  có u1  1 , công bội q   . Hỏi 2017 là số hạng thứ 10 10 mấy của  u n  ? A. Số hạng thứ 2018 B. Số hạng thứ 2017 C. Số hạng thứ 2019 D. Số hạng thứ 2016 7x  2 Câu 25: Số đường tiệm cận của đồ thị hàm số y  là x2  4
  4. A. 2 B. 4 C. 1 D. 3 Câu 26: Cho cấp số cộng  u n  có u 4  12, u14  18 . Tính tổng 16 số hạng đầu tiên của cấp số cộng này. A. S16  24 B. S16  26 C. S16  25 D. S16  24 Câu 27: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Hình chiếu của S trên mặt 3a phẳng (ABCD) trùng với trung điểm của cạnh AB. Cạnh bên SD  . Tính thể tích khối 2 chóp S.ABCD theo a. 1 3 3 3 5 3 2 3 A. a B. a C. a D. a 3 3 3 3 x2 . Tìm f    x  . 30 Câu 28: Cho hàm số f  x   x  1 30 31 A. f  30  B. f  30   x   30!1  x   x   30!1  x  30 31 C. f  30  x   30!1  x  D. f  30   x   30!1  x  Câu 29: Cần phải thiết kế các thùng dạng hình trụ có nắp đựng nước sạch có dung tích V  cm3  . Hỏi bán kính R  cm  của đáy hình trụ nhận giá trị nào sau đây để tiết kiệm vật liệu nhất? 3V V V V A. R  3 B. R  3 C. R  3 D. R  3 2  4 2 Câu 30: Tính diện tích xung quanh hình nón tròn xoay ngoại tiếp tứ diện đều cạnh bằng a. a 2 3 a 2 a 2 2 a 2 3 A. Sxq  B. Sxq  C. Sxq  D. Sxq  3 3 3 6 Câu 31: Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính côsin của góc giữa mặt bên và mặt đáy. 1 1 1 1 A. B. C. D. 3 2 2 3 b Câu 32: Tìm một nguyên hàm F  x  của hàm số f  x   a x   x  0  biết rằng x2 F  1 ; F 1  4;f 1  0. 3x 2 3 7 3x 2 3 7 A. F  x     B. F  x     4 2x 4 4 2x 4
  5. 3x 2 3 7 3x 2 3 1 C. F  x     D. F  x     2 4x 4 2 4x 2 Câu 33: Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A  l; 0; 3 , B  3; 2; 5  . Biết rằng tập hợp các điểm M trong không gian thỏa mãn đẳng thức AM 2  BM 2  30 là một mặt cầu  S . Tọa độ tâm I và bán kính R của mặt cầu  S là: A. I  2; 2; 8  ; R  3 B. I  1; 1; 4 ; R  6 30 C. I  1; 1; 4  ; R  3 D. I  1; 1; 4  ; R  2 2 1 x  3 8  x Câu 34: Cho hàm số y  f  x   . Tính lim f  x  . x x 0 1 13 10 A. B. C.  D. 12 12 11 2 2 Câu 35: Số nghiệm của phương trình 2x 2  2x  9   x 2  x  3 .8x  3x  6   x 2  3x  6  .8x  x 3 là: A. 1 B. 3 C. 2 D. 4 Câu 36: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA vuông góc với đáy SA  a 2. Gọi B, D là hình chiếu của A lần lượt lên SB, SD. Mặt phẳng cắt SC tại C'. Thể tích khối chóp S.AB'C 'D ' là: 2a 3 3 2a 3 2 a3 2 2a 3 3 A. V  B. V  C. V  D. V  9 3 9 3 Câu 37: Cho cấp số cộng  u n  biết u 5  18 và 4Sn  S2n . Tìm số hạng đầu tiên u1 và công sai d của cấp số cộng. A. u1  2,d  4 B. u1  2,d  3 C. u1  2,d  2 D. u1  3, d  2 Câu 38: Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D; SD vuông góc với mặt đáy  ABCD  ; AD  2a; SD  a 2. Tính khoảng cách giữa đường thẳng CD và mặt phẳng (SAB). 2a a a 3 A. B. C. a 2 D. 3 2 2 Câu 39: Trong hình hộp ABCD.A ' B ' C ' D ' có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào sai? A. BB'  BD B. A 'C '  BD C. A 'B  DC ' D. BC '  A 'D
  6.  19  Câu 40: Cho đồ thị hàm số  C  : y  f  x   2x 3  3x 2  5. Từ điểm A  ; 4  kẻ được bao  12  nhiêu tiếp tuyến tới  C  . A. 1 B. 2 C. 3 D. 4 Câu 41: Trong không gian với hệ tọ độ Oxyz, cho bốn điểm A 1; 0; 0  , B  0;1; 0  , C  0; 0;1 , D  0;0; 0  . Hỏi có bao nhiêu điểm cách đều bốn mặt phẳng  ABC  ,  BCD  ,  CDA  ,  DAB ? A. 4 B. 5 C. 1 D. 8 Câu 42: Với một đĩa phẳng hình tròn bằng thép bán kính R, phải làm một cái phễu bằng cách cắt đi một hình quạt của đĩa này và gấp phần còn lại thành một hình nón. Gọi độ dài cung tròn của hình quạt còn lại là x. Tìm x để thể tích khối nón tạo thành nhận giá trị lớn nhất. 2R 6 2R 2 2R 3 R 6 A. x  B. x  C. x  D. x  3 3 3 3 ax  b Câu 43: Hình vẽ bên dưới là đồ thị của hàm số y  . Mệnh đề nào sau đây là đúng? cx  d A. bd  0, ab  0 B. ad  0, ab  0 C. ad  0, ab  0 D. bd  0, ad  0 cos x  2 Câu 44: Tìm tất cả các giá trị thực của tham số m để hàm số y  nghịch biến trên cos x  m   khoảng  0;  .  2 A. m  2 B. m  0 hoặc 1  m  2 C. m  2 D. m  0 Câu 45: Một ô tô đang chạy với tốc độ 10(m/s) thì người lái đạp phanh, từ thời điểm đó ô tô chuyển động chậm dần đều với v  t   5t  10  m / s  , trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?
  7. A. 8m B. 10m C. 5m D. 20m Câu 46: Gọi m là số thực dương sao cho đường thẳng y  m  1 cắt đồ thị hàm số y  x 4  3x 2  2 tại hai điểm A, B thỏa mãn tam giác OAB vuông tại O (O là gốc tọa độ). Kết luận nào sau đây là đúng? 7 9 1 3 3 5 5 7 A. m   ;  B. m   ;  C. m   ;  D. m   ;   9 4 2 4  4 4  4 4 Câu 47: Từ các chữ số 0, 1, 2, 3, 5, 8 có thể lập được bao nhiêu số tự nhiên lẻ có bốn chữ số đôi một khác nhau và phải có mặt chữ số 3? A. 36 số B. 108 số C. 228 số D. 144 số Câu 48: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A  0; 2; 4  , B  3;5; 2  . Tìm tọa độ điểm M sao cho biểu thức MA 2  2MB2 đạt giá trị nhỏ nhất.  3 7  A. M  1;3; 2  B. M  2; 4; 0  C. M  3;7; 2  D. M   ; ; 1  2 2  Câu 49: Tìm tập các giá trị thực của tham số m để phương trình x x 4    2 1   2  1  m  0 có đúng hai nghiệm âm phân biệt. A.  2; 4  B.  3;5  C.  4;5  D.  5; 6  Câu 50: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB  BC  a 3 ,   SCB SAB   90 và khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a 2. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC theo a. A. S  4a 2 B. S  8a 2 C. S  12a 2 D. S  16a 2
  8. Đáp án 1-C 2-D 3-A 4-D 5-A 6-D 7-C 8-A 9-B 10-B 11-B 12-C 13-D 14-B 15-D 16-B 17-B 18-C 19-C 20-A 21-C 22-A 23-D 24-A 25-D 26-D 27-A 28-B 29-D 30-A 31-A 32-A 33-C 34-B 35-D 36-C 37-A 38-A 39-A 40-C 41-D 42-A 43-C 44-B 45-B 46-C 47-B 48-B 49-C 50-C LỜI GIẢI CHI TIẾT Câu 1: Đáp án C Câu 2: Đáp án D Ta có: y '  7x 6  10x 4  9x 2 Câu 3: Đáp án A 2 1 8  Ta có: I  lim n 2 n5  2 2 1 4 3  5 n n Câu 4: Đáp án D  x  1   3   2 Gọi A '  Tv  A    A'  A '  2; 7   y A '  2  5  7 Câu 5: Đáp án A Câu 6: Đáp án D sin 3x Ta có:  f  x  dx   cos3xdx  C 3 Câu 7: Đáp án C Ta có: y '  4x 3  4x  4x  x 2  1  0  x  0; 1;1  hàm số có 3 điểm cực trị. Câu 8: Đáp án A Câu 9: Đáp án B
  9. Hình lập phương có 8 đỉnh, 12 cạnh và 6 mặt. Câu 10: Đáp án B Câu 11: Đáp án B Câu 12: Đáp án C Câu 13: Đáp án D 1 2 Thể tích khối lăng trụ là: V  SABC .AA '   2a  sin 60.2a  2 3a 2 2 Câu 14: Đáp án B 5 PT  x    k2  k    6 Câu 15: Đáp án D  x 2  4x  5  0  x  2  2  1  0 Hàm số xác định     x  4  D   4;   x  4  0  x  4 Câu 16: Đáp án B (Dethithpt.com)  Ta có y '  cos x  y '  0  cos x  0  x   k  k    2  3  max y     3  ;   2 Suy ra y     1, y         2 3   2  3 2  max y  1    2 ; 3    Câu 17: Đáp án B Ta có y '   2x  2  e x   x 2  2x  2  e x  x 2e x . Câu 18: Đáp án C   Ta có: b  2a   2; 4; 6  Câu 19: Đáp án C x  4 Ta có: y '  2x 3  10x 2  4x  16  2  x  1 x  2  x  4   y '  0    1  x  2 Suy ra hàm số đồng biến trên các khoảng  1; 2  và  4;   . Câu 20: Đáp án A   4 4   1   Ta có I   tan 2 xdx    2  1  dx   tanx-x  4 0  1 0 cos x  4 Câu 21: Đáp án
  10. Câu 22: Đáp án A 1 1 VACB'D'  V ABCD.A'B 'C 'D'  a 3 3 2 Câu 23: Đáp án D Ta có 6303268125  54.35.7 3.112. Suy ra 63032681252 có 2  4  1 5  1 3  1 2  1  720 ước số nguyên. Câu 24: Đáp án A n 1 n 1  1 Gọi u n  2017   1     1   n  1  2017  n  2018 10  10  10n 1 Câu 25: Đáp án D Hàm số có TXĐ D   \ 2 . Ta có lim y  lim  0  Đồ thị hàm số có TCN y  0 x  x  Mặt khác x 2  4  0  x  2, lim  , lim y    Đồ thị hàm số có 2 TCĐ là x 2 x   2  x  2; x  2 Câu 26: Đáp án D  u  u1  3d  12  u1  21 16  42  15.3 Ta có  4   S16   24.  u14  u1  13d  18 d  3 2 Câu 27: Đáp án A 2 a 2 a 5 Ta có HD  a      2 2 2 2  3a   a 5  SH       a  2   2  1 1 a3 Thể tích khối chóp S.ABCD là: V  SABCD .SH  a 2 .a  . 3 3 3 Câu 28: Đáp án B x2 x 2  1  1  x  1 x  1  1 1 Ta có f  x      x  1  x  1 1 x   x  1 x 1 1! 2! 3! 30! 30! Có f '  x   1  2 ;f ''  x   3 , f  3  4  f 30    31  31  x  1  x  1  x  1  x  1 1  x  Câu 29: Đáp án D
  11. V Gọi chiều cao của hình trụ là h. Ta có: V  R 2 h  h  R 2 Diện tích toàn phần của hình trụ là: V 2V V V V V Sxq  2R 2  2R. 2  2R 2   2 R 2    3 3 2 R 2 . .  3 3 2V 2 R R R R R R V V Dấu = xảy ra  2R 2  R3 R 2 Câu 30: Đáp án A 2a 3 a 3 Bán kính đáy của hình nón là: R    3 2 3 2 a 3 2 a 6 Chiều cao của hình nón là: h  a      3  3 Diện tích xung quanh của hình nón là: a 3 a 2 3 Sxq  Rl  .  . 3 3 Câu 31: Đáp án A Dựng hình như hình vẽ. a 2 a 2 Ta có: OA   SO  SA 2  OA 2  2 2   SO  2 Khi đó tan   tan SHO OH 1 Do đó cos  3 Câu 32: Đáp án A
  12. b a x2 b Ta có: f 1  0  a  b  0. Do f  x   a x   x  0   F   x   C x2 2 x a a Do F  1  1   b  C  1; F 1  4   b  C  4 2 2 3 3 7 3x 2 3 7 Suy ra a  ; b   ;c   F  x     2 2 4 4 2x 4 Câu 33: Đáp án C Gọi I  1; 1; 4  ; AB2  24 là trung điểm của AB khi đó AM 2  BM 2  30  2  2   2   2 Suy ra MA  MB  30 MI  IA     MI  IB   30    AB2   2MI 2  IA 2  IB2  2MI IA  IB  30  2MI 2  30  2  MI  3. Do đó mặt cầu  S tâm I  1; 1; 4  ; R  3 . (Dethithpt.com) Câu 34: Đáp án B Cách 1: CALC  1  x   1  8  8  x  2  2 2 1 x  2  2  3 8  x  1  x  1  4  2 3 8  x  3 8  x  Cách 2: lim f  x   lim  lim x 0 x0 x x 0 x   2 1   13  lim   x0  1  x  1 2  12  4  2 3 8  x  3 8  x   Câu 35: Đáp án D 2 2 Phương trình đã cho  x 2  3x  6  x 2  x  3   x 2  x  3 .8x  3x  6   x 2  3x  6  .8x  x 3  u  v  u.8v  v.8u (với u  x 2  3x  6; v  x 2  x  3 )   8u  1 v   8v  1 u  0  * .  x 2  3x  6  0 TH1. Nếu u  0 , khi đó *  v  0   2 x  x  3  0 TH2. Nếu v  0, tương tự TH1. TH3. Nếu u  0; v  0 , khi đó  8u  1 v   8v  1 u  0   * vô nghiệm. TH4. Nếu u  0; v  0 , tương tự TH3. (Dethithpt.com) TH5. Nếu u  0; v  0 , khi đó  8u  1 v   8v  1 u  0  * vô nghiệm. TH6. Nếu u  0; v  0 , tương tự TH5.
  13. Vậy phương trình đã cho có 4 nghiệm phân biệt . 8u  1 8v  1 8u  1 Hoặc biến đổi *    0, dễ thấy  0; u  0 (Table = Mode 7). u v u Câu 36: Đáp án C Gọi O là tâm hình vuông ABCD. I  SO  B' D '  C '  AI ' SC.  BC  AB Ta có:   BC  AB'  BC  SA Lại có AB'  SB  AB  'SC , tương tự AD '  SC Do đó AC '  SC SB' SA 2 2 Xét tam giác SAB có: SB'.SB  SA 2    SB SB2 3 SC ' SA 2 2 Tương tự   SC SC2 4 VS.AB'C ' 2 2 1 Do đó  .  , do tính chất đối xứng nên: VS.ABC 3 4 3 VS.AB'C 'D' 1 a3 2 a3 2  ; VS.ABCD  V . VS.ABCD 3 3 9 Câu 37: Đáp án A Giả sử u n  u1   n  1 d  u 5  u1  4d  18 1 . n  2u1   n  1 d  2n  2u1   2n  1 d  Ta có: Sn  ;S2n  2 2
  14. Do S2n  4Sn  2n  2u1   2n  1 d   4n  2u1   n  1 d   2u1   2n  1 d  4u1   2n  2  d  2u1  d  2  . Từ (1) và (2) suy ra u1  2, d  4. Câu 38: Đáp án A Do AB / /CD do đó d  CD;  SAB    d  D;  SAB   SD.DA 2a Dựng DH  SA  DH   SAB   d  DH   SD 2  DA 2 3 Câu 39: Đáp án A Ta có đáy của hình hộp đã cho là hình thoi:  AC  BD Do đó   A 'C '  BD nên A đúng,  AC / /A 'C ' tương tự C, D đúng. Câu 40: Đáp án C
  15. PTTT của  C  tại điểm M  a; 2a 3  3a 2  5  là: y   6a 2  6a   x  a   2a 3  3a 2  5  19   19  Do tiếp tuyến đi qua điểm A  ; 4  nên 4   6a 2  6a    a   2a 3  3a 2  5  12   12   1 a  8 25 19   4a 3  a 2  a  1  0  a  1 2 2 a  2    19  Vậy từ điểm A  ; 4  kẻ được 3 tiếp tuyến tới  C  .  12  Câu 41: Đáp án D (Dethithpt.com) Gọi I  a; b; c  là điểm cách đều bốn mặt phẳng  ABC  ,  BCD  ,  CDA  ,  DAB  . a  b  c 1 Khi đó, ta có a  b  c  * . Suy ra có 8 cặp  a; b;c  thỏa mãn (*). 3 Câu 42: Đáp án A Gọi r, l lần lượt là bán kính đáy và độ dài đường sinh của hình nón. 1 1 Thể tích khối nón là V  r 2 h  r 2 l 2  r 2 , với h là chiều cao khối nón. 3 3 r2 r2 2 2 4  r 2 r2  4 6 Ta có r 4  l2  r 2   4. . .  l  r      l2  r 2   l 2 2 27  2 2  27 2l3 2l3 r2 3r 2 Suy ra r 2 l 2  r 2   V N   . Dấu “=” xảy ra   l2  r 2  l 2  1 3 3 9 3 2 2 Mà x là chu vi đường tròn đáy hình nón  x  2r và đường sinh l  R  2 2 3  x  82 R 2 2 R 6 Từ (1), (2) suy ra R 2  .   x 2  x . 2  2  3 3 Câu 43: Đáp án C Dựa vào đồ thị hàm số, ta thấy +) Đồ thị hàm số có TCĐ và tiệm cận ngang là  d  0 d a  c cd  0 x   ,y      ad  0 c c a  0 ac  0  c
  16. b 0  b   b   d  bd  0 +) Đồ thị hàm số đi qua các điểm có tọa độ  0;  ,   ; 0      d   a   b  0 ab  0  a Câu 44: Đáp án B  sin x  cos x  m   sin x  cos x  2  sin x  m  2  Ta có y '  2  2  cos x  m   cos x  m  Hàm số nghịch biến trên      m  2  0  m  2 m  0  0;   y '  0, x   0;   cos x  m   m  0;1   1  2  2      cos 1  m  2 Câu 45: Đáp án B Ô tô dừng hẳn  v  t   0  5t  10  0  t  2  s  2 2  5  Suy ra quãng đường đi được bằng   5t  10  dt    t 2  10t   10  m  0  2 0 Câu 46: Đáp án C 2 PT hoành độ giao điểm là m  1  x 4  3x 2  2  tx  t 2  3t  m  3  0 1 . Hai đồ thị có 2 giao điểm  1  có 2 nghiệm trái dấu  t1t 2  0  m  3  0  m  3  2   3  21  4m  t1   x A  t1  2 Khi đó    t  3  21  4m  x B   t1  2 2   OA  t1 ; m  1   Suy ra tọa độ hai điểm A,B là A     t1 ; m  1 , B  t1 ; m  1     OB   t1 ; m  1   Tam giác OAB vuông tại O   2 3  21  4m 2  OA.OB  0   t1   m  1  0     m  1  0 2 3 5 Giải PT kết hợp với điều kiện  2   m  1  m   ;  4 4 Câu 47: Đáp án B Xét các số lẻ có 4 chữ số được lập từ các số trên có: 3.4.4.3  144 số
  17. Xét các số lẻ có 4 chữ số được lập từ 4 số trên và không có mặt chữ số 3 có: 2.3.3.2  36 số Do đó có 144  36  108 thỏa mãn. Câu 48: Đáp án B   Gọi M  a; b;c  suy ra AM   a; b  2;c  4  , BM   a  3; b  5;c  2  2 2 2 2 2 Khi đó MA 2  2MB2  a 2   b  2    c  4   2  a  3   b  5    c  2     2 2  3a 2  12a  3b2  24b  3c2  96  3  a  2   3  b  4   3c 2  36  36 Vậy MA 2  2MB2   36. Dấu “=” xảy ra   a; b;c    2; 4;0  . min Câu 49: Đáp án C x 1 Đặt t    2  1  PT  4t   m  0  4t 2  m.t  1  0 1 . t PT ban đầu có 2 nghiệm âm phân biệt  1 có hai nghiệm t1 , t 2  1. Suy ra m 2  16  0 m  4   1  0    m   m  4 4  m  8  t1  t 2  2  2    4m5  t 1 t 1  0 4 1 m m  5  1  2   t1t 2   t1  t 2   1  0  4  4  1  0 Câu 50: Đáp án C Dựng hình vuông ABCD  SD  mp  ABCD  . Khi đó mặt cầu ngoại tiếp hình chóp S.ABC chính là mặt cầu ngoại tiếp hình chóp S.ABCD. Kẻ DH  SC  H  SC  mà BC   SCD   DH   SBC  . Mặt khác AD / /BC  D  A;  SBC    d  D;  SBC    DH  a 2 1 1 1 Tam giác SCD vuông tại D, có 2    SD  a 6 DH SD CD2 2
  18. Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD là 2 2 2 SD 2 a 6  a 6 R  R ABCD         a 3 4  2   4  2  Vậy diện tích mặt cầu cần tính là S  4R 2  4  a 3   12a 2 .
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2