intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử THPT Quốc gia môn Toán lớp 12 năm 2017 lần 2 - THPT Ngô Sĩ Liên - Mã đề 641

Chia sẻ: Hòa Trần | Ngày: | Loại File: PDF | Số trang:5

24
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề thi thử THPT Quốc gia môn Toán lớp 12 năm 2017 lần 2 - THPT Ngô Sĩ Liên - Mã đề 641 nhằm giúp học sinh ôn tập và củng cố lại kiến thức, đồng thời nó cũng giúp học sinh làm quen với cách ra đề và làm bài thi dạng trắc nghiệm.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử THPT Quốc gia môn Toán lớp 12 năm 2017 lần 2 - THPT Ngô Sĩ Liên - Mã đề 641

SỞ GD& ĐT BẮC GIANG<br /> TRƯỜNG THPT NGÔ SĨ LIÊN<br /> <br /> ĐỀ THI THỬ KỲ THI THPT QUỐC GIA LẦN 2<br /> Năm học: 2016 - 2017<br /> Môn: TOÁN 12<br /> Thời gian làm bài: 90 phút, không kể thời gian phát đề;<br /> (Đề thi gồm có 05 trang)<br /> (<br /> <br /> Mã đề thi<br /> 641<br /> <br /> Họ, tên thí sinh:..................................................................... Số báo danh: .............................<br /> Câu 1: Tam giác ABC đều cạnh a, đường cao AH. Thể tích của khối nón sinh ra khi miền tam giác ABC<br /> quay xung quanh trục AH là:<br />  a3 2<br />  a3 6<br />  a3 3<br />  a3 3<br /> A.<br /> B.<br /> C.<br /> D.<br /> 24<br /> 12<br /> 24<br /> 12<br /> Câu 2: Giá trị lớn nhất của hàm số y  2  sin x  cos 2 x<br /> 25<br /> 28<br /> 22<br /> A.<br /> B. 3<br /> C.<br /> D.<br /> 8<br /> 9<br /> 7<br /> 2<br /> 5<br /> <br /> 2<br /> 5<br /> <br /> <br /> <br /> Câu 3: Cho a  3  5  2 và b  log 7  sin <br />  11 <br /> A. a  0 và b  0<br /> B. a  0 và b  0<br /> Câu 4: Đồ thị hàm số y <br /> A. m 1<br /> <br /> khi đó:<br /> <br /> ,<br /> <br /> C. a  0 và b  0 .<br /> <br /> D. a  0 và b  0<br /> <br /> x 2  mx  2<br /> không có tiệm cận đứng khi và chỉ khi:<br /> xm<br /> B. m <br /> C. m  1<br /> D. m  1; 1<br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> Câu 5: Số nghiệm nguyên nhỏ hơn 5 của bất phương trình : 2 x  1 x 2  2 x  3  0 là:<br /> A. vô số<br /> Câu 6: Phương trình x 2 2<br /> A. 1;4<br /> <br /> B. 5 nghiệm<br /> x<br /> <br />  4  4 x2  2<br /> B. 1;1; 4<br /> <br /> C. 6 nghiệm<br /> x<br /> <br /> D. 7 nghiệm<br /> <br /> có tập nghiệm là:<br /> <br /> <br /> <br /> C. 1; 2<br /> <br /> <br /> <br /> D. 1;2<br /> <br /> Câu 7: Phương trình 4 x  2m.2 x  m  2  0 có 2 nghiệm phân biệt khi và chỉ khi:<br /> A. m  2<br /> B. m  2<br /> C.  2  m  2 .<br /> D. Không có giá trị nào của m<br /> <br /> x2  x  2<br /> trên đoạn  2;0 là<br /> x 1<br /> 8<br /> 19<br /> A. <br /> B. 2<br /> C. <br /> 3<br /> 7<br /> Câu 9: Các khẳng định sau khẳng định nào sai?<br /> A. Hàm số y  2 x luôn đồng biến trên <br /> B. Đồ thị hàm số y  3x có tiệm cận đứng là đường thẳng x  0<br /> C. Đồ thị hàm số y  ln x có tiệm cận đứng là đường thẳng x  0<br /> Câu 8: Giá trị nhỏ nhất của hàm số y <br /> <br /> D. <br /> <br /> 21<br /> 8<br /> <br /> D. Hàm số y  log 2 x đồng biến trên khoảng  0; <br /> Câu 10: Số đường tiệm cận của đồ thị hàm số y <br /> A. 0<br /> <br /> B. 1<br /> <br /> x2  x 1<br /> là:<br /> x<br /> C. 3<br /> <br /> D. 2<br /> <br /> Câu 11: Sự tăng trưởng của một loại vi khuẩn theo công thức S  A.ert trong đó A là số lượng vi khuẩn<br /> ban đầu, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là<br /> Trang 1/5 - Mã đề thi 641<br /> <br /> 100 con và sau 5 giờ có 300 con. Khi đó sau thời gian bao lâu thì số lượng vi khuẩn tăng gấp 10 lần so<br /> với số lượng ban đầu:<br /> A. t <br /> <br /> 5<br /> (giờ )<br /> log3<br /> <br /> B. t <br /> <br /> 3ln 5<br /> (giờ )<br /> ln10<br /> <br /> C. t <br /> <br /> 3<br /> (giờ )<br /> log 5<br /> <br /> D. t <br /> <br /> 5ln 3<br /> ln10<br /> <br /> (giờ )<br /> <br /> Câu 12: Hàm số y  x 2 e x nghịch biến trên khoảng:<br /> A.  2;0 <br /> <br /> B.  ; 2 <br /> <br /> C. 1; <br /> <br /> D.  ;1<br /> <br /> Câu 13: Cho hình chóp S.ABC có SA  ( ABC ), SA  a , ABC là tam giác vuông tại B có BA = a, BC = 2a .<br /> Thể tích khối cầu ngoại tiếp hình chóp S.ABC là:<br />  a3 6<br /> A.  a 3 12<br /> B.<br /> C. 4 a 3 3<br /> D.  a3 6<br /> 2<br /> Câu 14: Trong các hàm số sau, hàm số nào có đúng một cực trị<br /> A. y  x  1<br /> B. y  x 3  2 x 2  3x  1 C. y  x 4  2 x 2  3<br /> D. y  x  1<br /> Câu 15: Phương trình x 4  2 x 2  3  log 1 m có nghiệm khi và chỉ khi:<br /> 2<br /> <br /> A. m  0<br /> B. m  16<br /> C. 0  m  16<br /> D. m  16<br /> Câu 16: Một hình nón có thiết diện qua trục là tam giác vuông cân có diện tích là S. Thể tích của khối<br /> nón là<br /> 2<br /> 6<br /> 2<br /> 1<br />  ( S )3<br />  ( S )3<br /> A.<br /> B.  ( S )3<br /> C.  ( S )3<br /> D.<br /> 3<br /> 3<br /> 3<br /> 3<br /> Câu 17: Cho lăng trụ đều ABC. A'B'C' . Gọi I là trung điểm của cạnh B'C', biết AI  5a , AA '  4a . Thể<br /> tích của khối lăng trụ ABC. A'B'C' bằng:<br /> A. 12a3 3<br /> B. 2a 3 3<br /> C. 6a 3 3<br /> D. 8a3 3<br /> Câu 18: Cho lăng trụ tam giác đều có các cạnh cùng bằng a . Diện tích mặt cầu ngoại tiếp hình lăng trụ<br /> là:<br /> 7 a 2<br /> 7 a 2<br /> 7 a 2<br /> A.<br /> B.<br /> C.<br /> D. 7 a 2<br /> 2<br /> 6<br /> 3<br /> Câu 19: Tập xác định của hàm số y  log 3  x  1  log 2 x 2 là:<br /> A.  1; 0    0;  <br /> <br /> B.  1;0 <br /> <br /> C.  1;  <br /> <br /> D.  0;  <br /> <br /> Câu 20: Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD có AB = 2a, AD = a . Các cạnh bên bằng<br /> nhau và bằng 3a . Thể tích khối chóp S.ABCD là<br /> a3 31<br /> a 3 13<br /> a 3 13<br /> 4a 3 2<br /> A.<br /> B.<br /> C.<br /> D.<br /> 3<br /> 6<br /> 3<br /> 6<br /> x<br />  1  2<br /> <br /> Câu 21: Hàm số y  ln <br />  x có đạo hàm là:<br />  x 1  e<br /> 1<br /> 2x<br /> 1<br /> 2x<br />  x<br />  x ln 2<br /> A. <br /> B. <br /> x 1 e<br /> x 1 e<br /> x<br /> 1<br /> 2<br /> 1<br /> 2x<br />  x  ln 2  1<br />  x  ln 2  1<br /> C. <br /> D.<br /> x 1 e<br /> x 1 e<br /> <br /> Câu 22: Đồ thị hàm số y  x 4  2  m  1 x 2  m có ba điểm cực trị tạo thành tam giác có diện tích bằng<br /> <br /> 4 2 khi và chỉ khi:<br /> A. m  1<br /> <br /> B. m  0<br /> <br /> C. m  2<br /> <br /> D. m  3<br /> sin x  1<br /> Câu 23: Tìm tất cả các giá trị thực của tham số m sao cho hàm số y <br /> nghịch biến trên khoảng<br /> sin x  m<br />  <br />  0; <br />  2<br /> Trang 2/5 - Mã đề thi 641<br /> <br /> m  1<br /> A. <br />  1  m  0<br /> <br /> m  1<br /> C. <br />  1  m  0<br /> <br /> B. m  1<br /> <br /> D. m  1<br /> <br /> mx  1<br /> . Giá trị lớn nhất của hàm số trên [1;2] bằng -2. Khi đó giá trị m bằng<br /> xm<br /> B. m  1<br /> C. m  2<br /> D. m  3<br /> <br /> Câu 24: Cho hàm số f ( x ) <br /> A. m  4<br /> <br /> Câu 25: Cho các số thực x, y thỏa mãn x 2  y 2  2 x  4  0 . Giá trị nhỏ nhất, giá trị lớn nhất của biểu<br /> thức 2 x  y  1 lần lượt là:<br /> A. 0; 4<br /> B. 2; 4<br /> Câu 26: Cho log 3  m;ln 3  n thì ln 30 là :<br /> A. Đáp số khác .<br /> <br /> B. ln30 <br /> <br /> n<br /> 1<br /> m<br /> <br /> C. 4; 6<br /> <br /> C. ln 30 <br /> <br /> D. 0; 6<br /> <br /> n<br /> n<br /> m<br /> <br /> D. ln30 <br /> <br /> nm<br /> n<br /> <br /> x2  2 x  3<br /> với đường thẳng y  3 x  6 là:<br /> x 1<br /> A. 1<br /> B. 0<br /> C. 1<br /> D. 2<br /> Câu 28: Cho hình trụ có bán kính đáy R, trục OO’ = 2R và mặt cầu có đường kính OO’. Kí hiệu V1 , V2<br /> V<br /> lần lượt là thể tích của các khối trụ và khối cầu. Tính tỉ số 1 .<br /> V2<br /> V<br /> 2<br /> V 3<br /> V<br /> 4<br /> V 3<br /> A. 1  .<br /> B. 1  .<br /> C. 1  .<br /> D. 1  .<br /> V2 3<br /> V2 4<br /> V2 3<br /> V2 2<br /> Câu 29: Một công ty sản xuất một loại vỏ hộp sữa giấy hình trụ có thể tích không đổi là V, với mục tiêu<br /> chi phí làm vỏ hộp là ít nhất, tức diện tích toàn phần của hình trụ nhỏ nhất. Hình trụ có chiều cao h và bán<br /> kính đáy r. Tìm r và h để lượng giấy tiêu thụ là ít nhất.<br /> V<br /> V<br /> V<br /> V<br /> ,h 3<br /> A. r  2 3 , h  3<br /> B. r  2 3<br /> <br /> <br /> 2<br /> 2<br /> V<br /> V<br /> V<br /> V<br /> , h  23<br /> C. r  3<br /> D. r  3 , h  2 3<br /> 2<br /> 2<br /> <br /> <br /> Câu 30: Cho một mặt cầu, mặt phẳng đi qua tâm mặt cầu cắt mặt cầu theo thiết diện có diện tích bằng<br /> 4 . Bán kính của mặt cầu là:<br /> A. 3<br /> B. 3<br /> C. 2<br /> D. 2<br /> Câu 27: Số giao điểm của đồ thị hàm số y <br /> <br /> Câu 31: Cho a,b > 0 và a ,b  1, x và y là hai số dương. Tìm mệnh đề sai trong các mệnh đề sau:<br /> log b x<br /> A. log a x <br /> B. log a x 2016  2016 log a x<br /> log b a<br /> D. log a  xy   log a x  log a y<br /> <br /> C. log 21 x 2  4 log 2a x<br /> a<br /> <br /> Câu 32: Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, hai mặt (SAB) và (SAC) cùng vuông góc<br /> với mặt phẳng đáy, góc giữa SC và (ABC) bằng 450 . Thể tích khối chóp S.ABC bằng<br /> a3 3<br /> a3 2<br /> a3 3<br /> a3 2<br /> A.<br /> B.<br /> C.<br /> D.<br /> 6<br /> 12<br /> 12<br /> 6<br /> Câu 33: Hàm số y   mx 4   m2  1 x 2  m  1 có đúng một cực trị khi và chỉ khi<br /> <br />  1  m  0<br /> 0  m  1<br />  1  m  0<br />  m  1<br /> A. <br /> B. <br /> C. <br /> D. <br /> m  1<br />  m  1<br /> m  1<br /> 0  m  1<br /> Câu 34: Tập nghiệm của bất phương trình 2log2  x  1  log 2  5  x   1 là:<br /> A.  3;3<br /> <br /> B. 1;5<br /> <br /> C. 3;5<br /> <br /> D. 1;3<br /> <br /> Trang 3/5 - Mã đề thi 641<br /> <br /> Câu 35: Một hình trụ có hai đáy là hai hình tròn (O;R) và (O’;R), OO’ = R 2 . Xét hình nón có đỉnh O’,<br /> S<br /> đáy là hình tròn (O;R). Gọi S1 , S 2 lần lượt là diện tích xung quanh của hình trụ và hình nón, tỉ số 1 là:<br /> S2<br /> A.<br /> <br /> 6<br /> 3<br /> <br /> B.<br /> <br /> 2 6<br /> 3<br /> <br /> C.<br /> <br /> 2 2<br /> 3<br /> <br /> 6<br /> 6<br /> <br /> D.<br /> <br /> Câu 36: Tập xác định của hàm số y  log 0,3  log 3  x  2   là:<br /> A. 1;  <br /> <br /> B.  1;1<br /> <br /> C.  1;1<br /> <br /> Câu 37: Hàm số nào dưới đây có bảng biến thiên như hình bên<br /> x 1<br /> 2x<br /> x<br /> -∞<br /> A. y <br /> B. y <br /> y'<br /> x2<br /> x2<br /> 2x  5<br /> 2 x  1<br /> C. y <br /> D. y <br /> y<br /> x2<br /> x2<br /> <br /> D.  ;0 <br /> -2<br /> <br /> +∞<br /> <br /> +<br /> <br /> 2<br /> <br /> +<br /> 2<br /> <br /> +∞<br /> <br /> -∞<br /> <br /> Câu 38: Hàm số y   x 3  3 x đồng biến trên khoảng nào?<br /> A. 1; <br /> <br /> B.  ; 1<br /> <br /> C.  1; 2 <br /> <br /> D.  1;1<br /> <br /> Câu 39: Cho khối chóp S.ABC có SA, SB, SC đôi một vuông góc, diện tích các tam giác SAB, SBC, SCA<br /> lần lượt là 1m2 , 2m2 , 3m2 . Thể tích khối chóp S.ABC bằng:<br /> 12 3<br /> 6 3<br /> 12 3<br /> 6 3<br /> m<br /> m<br /> m<br /> m<br /> A.<br /> B.<br /> C.<br /> D.<br /> 6<br /> 3<br /> 3<br /> 6<br /> Câu 40: Cho hình chóp S.ABC có M là trung điểm của SB, G là trọng tâm tam giác SBC. Kí hiệu V1 , V2<br /> V<br /> lần lượt là thể tích của các khối chóp S . ABC và S . AMG . Tính tỉ số 1 .<br /> V2<br /> V<br /> V<br /> V<br /> V<br /> A. 1  5 .<br /> B. 1  3 .<br /> C. 1  4 .<br /> D. 1  6 .<br /> V2<br /> V2<br /> V2<br /> V2<br /> Câu 41: Tập nghiệm của bất phương trình: 3.4 x  5.6 x  2.9 x  0 là:<br /> 2 <br />  2<br /> A.  ;0  .<br /> B.  ;1<br /> C.  0; <br /> 3 <br />  3<br /> <br /> D.  0;1<br /> <br /> Câu 42: Phương trình log  x  1  log  x 2  2 x  m  có nghiệm duy nhất khi và chỉ khi<br /> <br /> 5<br /> <br /> m<br /> <br /> A.<br /> 4<br /> <br /> m  1<br /> <br /> 5<br /> <br /> m<br /> <br /> B. <br /> 4<br /> <br /> m  1<br /> <br /> 5<br /> <br /> m<br /> <br /> C. <br /> 4<br /> <br /> m  1<br /> <br /> D. m <br /> <br /> 5<br /> 4<br /> <br /> Câu 43: Biết log 3 7  a . Khi đó log 9 9529569 theo a là:<br /> A. 2a  3<br /> B. 2  3a<br /> C. 2  3a<br /> D. Đáp số khác.<br /> 2 3<br /> Câu 44: Giải phương trình log 1 x  2 log 2 x  75  0 (1) một học sinh thực hiện theo các bước sau:<br /> 2<br /> <br /> (I) Điều kiện xác định x  0<br /> (II) (1)  9 log 22 x  2 log 2 x  75  0<br />  log 2 x  3<br /> (III)  <br />  log 2 x   25<br /> 9<br /> <br /> (IV)  log 2 x  3  x  8 . Vậy (1) có nghiệm duy nhất là x  9<br /> <br /> Các bước đúng là<br /> A. (I), (II)<br /> C. (I), (II), (III), (IV)<br /> <br /> B. Không bước nào đúng<br /> D. (I), (II), (III)<br /> Trang 4/5 - Mã đề thi 641<br /> <br /> 1<br /> 3<br /> <br /> Câu 45: Cho hàm sô y  x . Các khẳng định sau, khẳng định nào đúng?<br /> A. Hàm số luôn đồng biến trên tập xác định<br /> B. Đồ thị hàm số luôn có tiệm cận đứng là x  0<br /> C. Đạo hàm của hàm số tại x  0 bằng 0.<br /> D. Hàm số có cực trị<br /> Câu 46: Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh bằng 4 . Diện tích toàn<br /> phần của hình trụ bằng:<br /> A. 7<br /> B. 8<br /> C. 5<br /> D. 6<br /> Câu 47: Trong không gian cho hai điểm A, B cố định. Chọn khẳng định sai<br /> A. Tập hợp các điểm M trong không gian sao cho tam giác MAB vuông tại M là mặt cầu đường kính<br /> AB<br /> B. Tập hợp tâm các mặt cầu đi qua hai điểm A và B là đường trung trực của đoạn thẳng AB<br /> C. Tập hợp các điểm M trong không gian sao cho tam giác MAB có diện tích bằng k ( k là hằng số<br /> 2k<br /> dương cho trước) là mặt trụ có trục là đường thẳng AB, bán kính R <br /> AB<br /> D. Tập hợp các điểm M trong không gian sao cho góc giữa hai đường thẳng AB và AM luôn<br /> bằng  (  cho trước, 00    900 ) là mặt nón đỉnh A, có trục là đường thẳng AB, góc ở đỉnh 2<br /> Câu 48: Đường cong trong hình vẽ sau là đồ thị của một trong 4 hàm số dưới đây. Hỏi đó là hàm số nào?<br /> <br /> x 4 x2<br /> A. y    1<br /> 4 2<br /> 4<br /> <br /> x<br /> C. y   x 2  1<br /> 4<br /> <br /> x4<br /> B. y   2 x 2  1<br /> 4<br /> 4<br /> <br /> x<br /> D. y    x 2  1<br /> 4<br /> <br /> y<br /> 1<br /> x<br /> -3<br /> <br /> -2<br /> <br /> -1<br /> <br /> 1<br /> <br /> 2<br /> <br /> 3<br /> <br /> -1<br /> -2<br /> -3<br /> -4<br /> -5<br /> <br /> Câu 49: Khối hộp ABCD.A’B’C’D’ có AA’B’D’ là tứ diện đều cạnh a . Thể tích của khối hộp<br /> ABCD.A’B’C’D’ là<br /> 3a 3<br /> a3 2<br /> a3 2<br /> a3 2<br /> A.<br /> B.<br /> C.<br /> D.<br /> 8<br /> 6<br /> 4<br /> 2<br /> Câu 50: Cho hình trụ có bán kính R và chiều cao cũng bằng R. Thiết diện của hình trụ khi cắt bởi mặt<br /> phẳng cắt trục và không vuông góc với trục là hình vuông ABCD có hai cạnh AB và CD lần lượt là dây<br /> cung của hai đường tròn đáy. Diện tích của hình vuông ABCD là:<br /> 7 R2<br /> 5R 2<br /> 7 R2<br /> 5R 2<br /> A.<br /> B.<br /> C.<br /> D.<br /> 3<br /> 2<br /> 2<br /> 3<br /> -----------------------------------------------<br /> <br /> ----------- HẾT ---------Thí sinh không được sử dụng tài liệu, Cán bộ coi thi không giải thích gì thêm<br /> <br /> Trang 5/5 - Mã đề thi 641<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2