intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử THPTQG môn Toán lần 1 năm 2019 - THPT Lê Lợi, Phú Yên

Chia sẻ: Trần Thị Ta | Ngày: | Loại File: PDF | Số trang:13

13
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Gửi đến các bạn học sinh Đề thi thử THPTQG môn Toán lần 1 năm 2019 - THPT Lê Lợi, Phú Yên được TaiLieu.VN chia sẻ dưới đây nhằm giúp các em có thêm tư liệu để tham khảo cũng như củng cố kiến thức trước khi bước vào kì thi. Cùng tham khảo giải đề thi để ôn tập kiến thức và làm quen với cấu trúc đề thi các em nhé, chúc các em thi tốt!

Chủ đề:
Lưu

Nội dung Text: Đề thi thử THPTQG môn Toán lần 1 năm 2019 - THPT Lê Lợi, Phú Yên

  1. SỞ GD & ĐT PHÚ YÊN ĐỀ THI THỬ THPT QG NĂM HỌC 2018 - 2019 TRƯỜNG THPT LÊ LỢI Môn: TOÁN Thời gian làm bài: 90 phút, không kể thời gian phát đề. (50 câu trắc nghiệm) Họ và tên thí sinh: ……………….………....……………........................Số báo danh ………………..…… Câu 1. Phương trình 5 x  1 tương đương với phương trình nào sau đây: A. 5x  x  3  1  x  3. B.  5 x   1. 2 1 1 1 1 C. 5 x  2  1 2 . D. 5 x   1 . x 2 x 2 x x 2 x 2  3x  5 Câu 2. Bất phương trình  0 có tập nghiệm là: 2 x 5  5  A. S   1; 2  ;   . B. S   1; 2   ;   . 2  2   5  5 C. S   ; 1  2;  . D. S   ; 1  2;  .  2  2 sin  cos  4 4 1 sin 2018  cos 2018 Câu 3. Cho a, b  0 và   , giá trị của biểu thức  1008 bằng: a b a b a1008 b 1 1 1 1 A. . B. . C. . D. . a  b ab a  b a  b 1008 1009 1010 Câu 4. Cho a  2;5 và b   4;3 . Tích vô hướng a.b bằng: A. 10. B. 22. C. 2. D. 7. 2 2 x y Câu 5. Trong mặt phẳng Oxy, cho elip   1 có tiêu cự là: 36 11 A. 5. B. 10. C. 25. D. 12. Câu 6. Nghiệm phương trình 2cosx  1 là:      x   k 2  x   k 2 A.  3 k   . B.  6 k   .  x  2  k 2  x  5  k 3  3  6      x  6  k 2  x  3  k 2 C.  k   . D.  k   .  x  5  k 2  x     k 2  6  3 Câu 7. Nghiệm của phương trình cos 2 x  5sin x  3  0 là:          x   6  k 2  x   3  k 2  x   6  k  x   3  k A.  , k  Z . B.  , k  Z . C.  , k  Z . D.  ,k Z .  x  7  k 2  x  7  k 2  x  7  k  x  7  k  6  3  6  3 1 1 1 1 1 Câu 8. Giá trị của A     ...   bằng: 1!2018! 2!2017! 3!2016! 1008!1011! 1009!1010! Trang 1/13
  2. 22017  1 22018 22018  1 22017 A. . B. . C. . D. . 2018! 2019! 2019! 2018! Câu 9. Cho cấp số cộng  un  và gọi S n là tổng n số hạng đầu tiên của nó. Biết S7  77 và S12  192 . Tìm số hạng tổng quát un của cấp số cộng đó. A. un  5  4n . B. un  3  2n . C. un  2  3n . D. un  4  5n . Câu 10. Tính giới hạn I  lim  x  3 . x 2 A. I  1 . B. I  0 . C. I  1. D. I  5 . Câu 11. Tính đạo hàm của hàm số y  2sin 3x  cos 2 x. A. y  6 cos 3x  2sin 2 x. B. y  2 cos 3x  sin 2 x. C. y  6cos 3x  2sin 2 x. D. y  2 cos 3x  sin 2 x. Câu 12. Cho hình vuông ABCD tâm I . Gọi M , N lần lượt là trung điểm AD, DC . Phép tịnh tiến theo vectơ nào sau đây biến tam giác AMI thành INC A. AM . B. IN . C. AC . D. MN . Câu 13. Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD ) và (GAB ) là: A. AM ( M là trung điểm của AB ). B. AN ( N là trung điểm của CD ). C. AH ( H là hình chiếu của B trên CD ). D. AK ( K là hình chiếu của C trên BD ). Câu 14. Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB và CD. Gọi I , J lần lượt là trung điểm của AD và BC và G là trọng tâm của tam giác SAB. Giao tuyến của (SAB ) và (IJG ) là A. SC . B. đường thẳng qua S và song song với AB. C. đường thẳng qua G và song song với DC . D. đường thẳng qua G và cắt BC . uuur r uuur r uuur r Câu 15. Cho tứ diện ABCD. Đặt AB = a, AC = b , AD = c . Gọi M là trung điểm của đoạn thẳng BC . Đẳng thức nào dưới đây là đúng ?   1 uuuur 1 r r r uuuur 1 r r r uuuur 1 r r r A. DM  a  b  2c B. DM = (- 2a + b + c ). C. DM = (a - 2b + c ). D. DM = (a + 2b - c ). 2 2 2 2 Câu 16. Cho hàm số y  f ( x) xác định trên R và có bảng xét dấu đạo hàm sau: Kết luận nào đúng ? A. Hàm số đạt cực đại tại x = -1 và x = 5. B. Hàm số đạt cực tiểu tại x = 3. C. Hàm số đồng biến trên khoảng  ;3 . D. Hàm số có ba cực trị. x2  x  2 Câu 17. Số tiệm cận của đồ thị hàm số y  f ( x)  x2  4 x  3 A. 1. B. 2. C. 3. D. 4. xm Câu 18. Tìm m để giá trị lớn nhất của hàm số y  trên đoạn 0; 2 bằng 2 x 1 A. m = -2. B. m = -1. C. m = - 4. D. m = 0 Trang 2/13
  3. Câu 19. Cho hàm số y  f ( x) liên tục trên R và có đồ thị y  f '( x) như hình vẽ. y -1 1 x O -7 -11 Khi đó hàm số y  g ( x)  f ( x)  2 x3  x2  3x đồng biến trên khoảng nào ? A.  ;1 . B.  ; 1 và 1;   . C.  1;1 . D.  1;   . Câu 20. Biết rằng đồ thị hàm số bậc 4 y  f  x  được cho như hình vẽ sau: y x O Tìm số giao điểm của đồ thị hàm số y  g  x    f   x   f  x  . f   x  và trục Ox. 2 A. 0. B. 2. C. 4. D. 6. Câu 21. Đồ thị hàm số nào sau đây nhận trục tung là tiệm cận đứng 2x 1 A. y  . B. y  log3 x. C. y  tan x . D. y  3x. x 1 Câu 22. Cho hai số thực dương a và b thỏa mãn a 2  b 2  98ab . Khẳng định nào sau đây là đúng? a b A. 2log 2 (a  b)  log 2 a  log 2 b .  log 2 a  log 2 b . B. log 2 2 a b a b C. 2 log 2  log 2 a  log 2 b . D. log 2  2  log 2 a  log 2 b  . 10 10 Câu 23. Gọi T là tổng các nghiệm nguyên của bất phương trình 4 x  9.2 x1  32  0 .Khi đó : A. T = 10. B. T = 135. C. T = 5. D. T = 120. Câu 24. Để xóa nhà tạm cải thiện cuộc sống, anh An quyết định vay ngân hàng 100 triệu đồng với lãi suất 9%/ năm và 6 tháng sau khi vay anh bắt đầu trả nợ ngân hàng theo hình thức trả góp: đầu mỗi tháng anh trả một số tiền không đổi là X đồng . Anh phấn đấu trả xong nợ trong vòng 2 năm tính từ lúc bắt đầu trả nợ. Hỏi X gần nhất với số nào ? A. 4,6 triệu đồng . B. 4,7 triệu đồng. C. 4,8 triệu đồng. D. 4,9 triệu đồng.  x 1  Câu 25. Cho x, y là hai số thực dương thỏa log    y  x  6 y  9 y  3x  2 . Tìm giá trị nhỏ 3 3 2  y  1  nhất của biểu thức P  xy  2 x  4 y A. Pmin  7 . B. Pmin  8 . C. Pmin  0. D. Pmin  8. Câu 26. Khẳng định nào sau đúng? 1 1 1 A.  x dx .=  x 2 +C. B.  x dx = ln x +C. Trang 3/13
  4. 2 x 1 C.  2 x dx = + C (x  -1). D.  2 x dx = 2 x ln2 +C. x 1 Câu 27. Tìm hàm số F  x  biết F '  x   3x 2  2 x  1 và đồ thị y  F  x  cắt trục tung tại điểm có tung độ bằng e. A. F  x   x 2  x  e. B. F  x   cos 2 x  e  1. C. F  x   x3  x 2  x  e. D. F  x   x3  x 2  x  1.  Câu 28. Biết rằng hàm số f  x  có đạo hàm f '  x  liên tục trên và f  0    ,  f '  x  dx  3 . Tính 0 f   . A. f    0. B. f     . C. f    2 . D. f    4 .  4 Câu 29. Tính tích phân I   x sin 2xdx . 0 1  3 A. I  . B. I  . C. I  1 . D. I  . 4 2 4 5 dx Câu 30. Biết  2 x  1  ln a , a 1 là số nguyên dương. Khi đó a bằng ? A. 1. B. 2. C. 3. D. 4. 1  3x  1 m 5 m Câu 31. Biết x 0 2  6x  9 dx  3ln  ; trong đó m, n là hai số nguyên dương và n 6 n là phân số tối giản. Hãy tính mn. 5 A. mn  5. B. mn  12. C. mn  6. D. mn  . 4 Câu 32. Cho hình chữ nhật ABCD có AB  a và BDC  300 . Quay hình chữ nhật này xung quanh cạnh A D. Diện tích xung quanh của hình trụ được tạo thành là: 2 A.  a2 . B.  a 2 . C. 2 3 a 2 . D. 3 a 2 . 3 Câu 33. Cho hình chóp S. ABC có SA , SB , SC đôi một vuông góc với nhau và SA  3a , SB  4a và AC  3a 17 . Tính theo a thể tích V của khối cầu đi qua các đỉnh của hình chóp S. ABC . 8788 a3 2197 a3 2197 a3 A. V  8788 a . 3 B. V  . C. V  . D. V  . 3 2 6 Câu 34. Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần đường kính của đáy. Một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của cốc nước. Người ta thả từ từ thả vào cốc nước viên bi và khối nón đó (hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp vỏ thủy tinh) . 5 1 4 2 A. . B. . C. . D. . 9 2 9 3 Trang 4/13
  5. Câu 35. Cho hình nón có chiều cao h . Tính chiều cao x của khối trụ có thể tích lớn nhất nội tiếp trong hình nón theo h . h h 2h h A. x  . B. x  . C. x  . D. x  . 2 3 3 3 Câu 36. Một cái ly đựng rượu có dạng hình nón như hình vẽ. Người ta đổ một 1 lượng rượu vào ly sao cho chiều cao của lượng rượu trong ly bằng chiều 3 cao của ly (không tính chân ly). Hỏi nếu bịt kín miệng ly rồi lộn ngược ly lên thì tỷ lệ chiều cao của rượu và chiều cao của ly trong trường hợp này bằng bao nhiêu? 1 1 3  3 26 A. . B. . C. . D. 6 9 3 3 2 2 . 3 Câu 37. Cho hình chóp S. ABC trên các cạnh SA, SB, SC lần lượt lấy các điểm M , N , P sao cho SA SB SC  2,  3,  4 . Biết thể tích của khối chóp S. ABC bằng 1. Hỏi thể tích của khối đa diện SM SN SP MNPABC bằng bao nhiêu? 5 3 1 23 A. . B. . C. . D. . 24 4 24 24 Câu 38. Cho hình chóp S. ABCD đáy hình chữ nhật, SA vuông góc đáy, AB  a, AD  2a . Góc giữa SB và đáy bằng 450 . Thể tích khối chóp là a3 2 2a 3 a3 a3 2 A.  B.  C.  D.  3 3 3 6 Câu 39. Cho hình chóp S. ABCD có đáy ABCD là hình thang, AB / /CD, AB = 2CD. Gọi M , N tương V ứng là trung điểm của SA và SD . Tính tỉ số S.BCNM VS.BCDA 5 3 1 1 A. . B. . C. . D. . 12 8 3 4 Câu 40. Tứ diện ABCD có AB  CD  4, AC  BD  5, AD  BC  6. Tính khoảng cách từ điểm A đến mặt phẳng BCD. 42 3 42 3 42 42 A. . B. . C. . D. . 7 14 7 14 Câu 41. Cho hình chóp tứ giác S. ABCD , khoảng cách từ S đến mặt phẳng đáy  ABCD  bằng 3a , ABC  ADC  90 , AB  AD  a , AC  2a . Trên mặt phẳng đáy, đường thẳng tiếp xúc với đường tròn tâm A bán kính bằng a cắt các cạnh BC , CD lần lượt tại M và N . Thể tích khối chóp S .MNC lớn nhất bằng Trang 5/13
  6. a3 3 a3 3 a3 3 2a 3 3 A. . B. . C. . D. . 3 6 2 3 Câu 42. Cho số phức z  5  i. Tìm phần thực và phần ảo của số phức z. A. Phần thực bằng 5, phần ảo bằng 0. B. Phần thực bằng 5, phần ảo bằng -1. C. Phần thực bằng -1, phần ảo bằng 5. D. Phần thực bằng 0, phần ảo bằng 5. Câu 43. Tìm số phức liên hợp của số phức z  3i  2  i  . A. z = 6 + 3i. B. z = 6-3i. C. z = 3+3i. D. z = 3-6i. Câu 44. Tìm các số thực x, y biết: (9 - x) + (2 - y)i = 4 + 3i A. x = 5, y = -1. B. x = -5, y =1. C. x =13, y = 0. D. x = 5, y =1. Câu 45. Mô đun của -5iz bằng A. -5|z|. B. 5 z. C. 5. D. 5|z|. Câu 46. Cho số phức z = x + yi với x, y có điểm biểu diễn M thuộc đường thẳng d: x - 2y -1 = 0 và |3x+i-2 z | có giá trị nhỏ nhất. Số phức z là: 2 3 3 1 1 3 2 3 A. z = - i. - i. C. z =  i . B. z = D. z =  - i . 5 10 2 4 4 2 5 10 Câu 47. Trong mặt phẳng tọa độ Oxyz , cho ba điểm M  2;0;0  , N  0;  1;0  và P  0;0; 2  . Mặt phẳng  MNP  có phương trình là x y z x y z x y z x y z A.    0.    1 . C.    1 . B. D.    1 . 2 1 2 2 1 2 2 1 2 2 1 2 Câu 48. Trong không gian Oxyz , đường thẳng đi qua điểm A 1; 2;3 và vuông góc với mặt phẳng 4 x  3 y  3z  1  0 có phương trình là.  x  1  4t  x  1  4t  x  1  4t  x  1  4t     A.  y  2  3t . B.  y  2  3t . C.  y  2  3t . D.  y  2  3t .  z  3  3t z  3  t  z  3  3t  z  3  3t     Câu 49. Cho điểm A  2;0;0  , B  0; 2;0  , C  0;0; 2  , D  2; 2; 2  . Mặt cầu ngoại tiếp tứ diện ABCD có bán kính là: 3 2 A. . . B. 3 . C. D. 3 2 3 Câu 50. Trong không gian với hệ tọa độ Oxyz , cho điểm A 1; 2; 3 và mặt phẳng  P  : 2 x  2 y  z  9  0 . Đường thẳng d đi qua A và có vectơ chỉ phương u   3; 4; 4  cắt  P  tại B . Điểm M thay đổi trong  P  sao cho M luôn nhìn đoạn AB dưới góc 90o . Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau? A. I  1; 2;3 . B. H  2; 1;3 . C. K  3;0;15 . D. J  3; 2;7  . ----------------------------------------------- ----------- HẾT ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Trang 6/13
  7. ĐÁP ÁN 1-C 2-B 3-A 4-D 5-B 6-D 7-A 8-C 9-B 10-A 11-A 12-D 13-B 14-C 15-A 16-B 17-B 18-A 19-B 20-A 21-B 22-C 23-C 24-C 25-B 26-B 27-C 28-D 29-A 30-C 31-C 32-A 33-C 34-A 35-B 36-C 37-D 38-B 39-C 40-C 41-A 42-B 43-C 44-A 45-D 46-A 47-D 48-C 49-B 50-A HƯỚNG DẪN GIẢI CÂU VẬN DỤNG Câu 3: A sin 4  cos4 1 Ta có:   a b a b  sin 4  cos 4    a  b    1  a b   sin 4   sin 4   cos 4  cos 4   sin 2   cos 2  b a 2 a b b a  sin 4   cos 4  2sin 2  cos 2  0 a b 2  b a 2    sin 2   cos    0  a b  b a 2  sin 2   cos  a b sin 2  cos 2   a b sin  cos 2 2 1 Đặt  t 0t  a b ab sin 2018  cos 2018  at   bt  1009 1009 1  1008  1008  1008   a  b  t1009  a  b Ta có: 1008 1008 a b a b Câu 8: C 1 Ck Ta có  n . k ! n  k  ! n ! Do đó C1 C2 C3 C1009 C1  C2019 2  ...  C2019 1009 C 0  C2019 1  C2019 2  ...  C2019 1009 1 A  2019  2019  2019  ...  2019  2019  2019 2019! 2019! 2019! 2019! 2019! 2019! 2 1 2018  . 2019! Câu 9: B Trang 7/13
  8.  7.6.d  S7  77 7u1  2  77 7u  21d  77 u  5 Ta có    1  1 .  S12  192 12u  12.11.d  192 12u1  66d  192 d  2  1 2 Khi đó un  u1   n  1 d  5  2  n  1  3  2n . Câu 12: D Ta có MN  AI  IC  TMN (AMI )  INC. Câu 13: B A B D G N C · A là điểm chung thứ nhất giữa hai mặt phẳng (ACD ) và (GAB ). ìï N Î BG Ì (ABG ) Þ N Î (ABG ) · Ta có BG Ç CD = N ¾ ¾® ïí Þ N là điểm chung thứ hai giữa hai mặt ïï N Î CD Ì (ACD ) Þ N Î (ACD ) î phẳng (ACD ) và (GAB ). Vậy (ABG )Ç (ACD ) = AN . Câu 14: C S P G Q A B I J D C Ta có: I , J lần lượt là trung điểm của AD và BC Þ IJ là đường trunh bình của hình thang ABCD Þ IJ P AB P CD. Gọi d = (SAB )Ç (IJG ) Ta có: G là điểm chung giữa hai mặt phẳng (SAB ) và (IJG ) Trang 8/13
  9. ìï (SAB )É AB;(IJG )É IJ Mặt khác: ïí Þ Giao tuyến d của (SAB ) và (IJG ) là đường thẳng qua G và song ïï AB P IJ î song với AB và IJ . Câu 15: A A B D M C uuur 1 uuur Vì M là trung điểm của BC BM = BC . suy ra 2 uuuur uuur uuur uuur uuur uuur 1 uuur uuur uuur 1 uuur uuur Ta có DM = DA + AB + BM = AB - AD + BC = AB - AD + BA + AC . 2 2 ( ) 1 uuur 1 uuur uuur 1 r 1 r r 1 r r r = AB + AC - AD = a + b - c = 2 2 2 2 2 ( a + b - 2c . ) Câu 19: B Theo giả thiết, Hàm số y  g ( x)  f ( x)  2 x3  x2  3x liên tục trên R Ta có y '  g '( x)  f '( x)  6 x 2  2 x  3  f '( x)  (6 x 2  2 x  3) Đồ thị y  f '( x) và parabol (P): y  6 x2  2 x  3 trên cùng hệ trục toạ độ như hình vẽ y 1 x -1 O -7 -11 Dựa và đồ thị ta có bảng biến thên Hàm số y = g(x) đồng biến trên các khoảng  ; 1 và 1;   . Câu 20: A Đồ thị hàm số y  f  x  cắt trục hoành tại bốn điểm phân biệt nên f  x   a  x  x1  x  x 2  x  x 3  x  x 4   f '  x   a  x  x1  x  x 2  x  x 3  x  x 4   a  x  x1  x  x 3  x  x 4  a  x  x1  x  x 2  x  x 4   a  x  x1  x  x 2  x  x 3   1 1 1 1  f ' x   f  x       , x  x1; x 2 ; x 3 ; x 4   f '  x   0, x  x1; x 2 ; x 3 ; x 4   x  x 1 x  x 2 x  x 3 x  x 4  Trang 9/13
  10. f ' x  1 1 1 1 Đặt h  x       , x  x1 ; x 2 ; x 3 ; x 4  f  x  x  x1 x  x 2 x  x 3 x  x 4 Ta có f ''  x  .f  x   f '  x   2 1 1 1 1 h ' x        0x  x1; x 2 ; x 3 ; x 4  f 2 x  x  x1   x  x 2  2 2  x  x3  2  x  x4  2  f ''  x  .f  x   f '  x    0x  x1; x 2 ; x 3 ; x 4  2  g  x   f '  x    f ''  x  .f  x   0x  x1; x 2 ; x 3 ; x 4  2 Khi f  x   0  f '  x   0  g  x   f '  x   f ''  x  .f  x   0 2 Vậy đồ thị hàm số y  g  x   f '  x   f  x  .f ''  x  không cắt trục Ox. 2 Câu 22: C ab ab ab 2 2 a  b  98ab   a  b   100ab     ab  log 2    log 2 ab  2 log 2    log 2 a  log 2 b 2 2 2  10   10   10  Câu 23: C 4x  9.2x1  32  0  (2x )2 18.2 x  32  0  2  2 x  16  1  x  4 vì x nguyên nên x = 2 hoặc x = 3 => T = 5. Câu 24: C Lãi suất 9%/năm nên lãi suất mỗi tháng là r = 9%: 12 = 0,75%/tháng = 0,0075 Số tiền gốc và lãi sau 6 tháng đầu là A  100.106 (1  0,0075)6  104585223.5 đ (1  r )n  1 Gọi Sn là số tiền còn lại sau khi anh trả n kì . Sn  A(1  r )n  X r (1  r )  1 24 Trả xong trong 2 năm = 24 kì S24 = 0  A(1  r )24  X 0 r A(1  r ) 24 .r X  4, 777,948.982  4,8 x106 đ (1  r )  1 24 Câu 25: B  x 1  Giả thiết log    y  x  6 y  9 y  3x  2 (1) 3 3 2  y  1  x 1 Điều kiện:  0 , vì y > 0 nên y+1 > 0 đo đó x > 1 y 1 Khi đó (1)  ( x  1)3  3( x  1)2  log( x  1)  ( y  1)3  3( y  1)2  log( y  1) (2) Xét hàm f (t )  t 3  3t 2  log t trên khoảng  0;   1  0, t  0  f (t ) đồng biến trên khoảng  0;   f '(t )  3t 2  6t  t ln10 Vì x-1>0 và y+1>0 nên (2)  f ( x  1)  f ( y  1)  x  1  y  1  y  x  2 Khi đó P  xy  2 x  4 y  x( x  2)  2 x  4( x  2)  x2  8x  8 với x > 1 Xét g  x   x 2  8x  8 trên khoảng 1;   => Pmin  8 khi x  4 Câu 34: A Gọi R, h, lần lượt là bán kính đáy, chiều cao của hình trụ  h  3.2.R  6R Thể tích của khối trụ là V  R 2 h  R 2 .6R  6R 3 4 Thể tích của viên bi trong hình trụ là Vc  R 3 3 1 2 R 2 4 Thể tích của khối nón trong hình trụ là VN  R h N   h  2R   R 3 3 3 3 Trang 10/13
  11. 4 8 Khi đó, thể tích nước bị tràn ra ngoài là V1  Vc  VN  2. R 3  R 3 3 3 V  V1  8  5 Vậy tỉ số cần tính là T    6R 3  R 3  : 6R 3  V  3  9 Câu 35: B O B h J x I R r A Gọi r, R theo thứ tự là bán kính đáy hình nón và khối trụ cần tìm. O là đỉnh của hình nón, I là tâm của đáy hình nón, J là tâm của đáy hình trụ và khác I . OA là một đường sinh của hình nón, r hx R B là điểm chung của OA với khối trụ. Ta có:   r  (h  x ) . R h h R2 Thể tích khối trụ là: V   xR 2   x 2 (h  x )2 h R2 Xét hàm số V ( x )   x 2 (h  x )2 , 0  x  h . h 2 R h Ta có V '( x )   2 (h  x )(h  3x )  0  x  hay x  h. h 3 Bảng biến thiên: h Dựa vào BBT, ta thấy thể tích khối trụ lớn nhất khi chiều cao của khối trụ là x  . 3 Câu 36: C Gọi R1 , h1 ,V1 lần lượt là bán kính, chiều cao và thể tích của hình nón phần chứa rượu . Gọi V2 là chiều cao và thể tích của phần còn lại. Gọi h2 là chiều cao của phần còn lại khi lộn ngược lên trên. h1 1  . Theo ta lét ta suy ra Theo giả thiết ta có h 3 R1 1 V1 1 V 1 26     2  1  R 3 V 27 V 27 27 Khi lộn ngược ly lên thì lượng rượu có thể tích V1 xuống miệng ly còn phần còn lại V2 lên trên nên ta có 3 V2 26 h 26   2 V 27 h 3 Trang 11/13
  12. 3 26 3  3 26 1  . Nên tỉ số chiều cao phần còn lại với chiều cao ly cũng là tỉ số cần tìm là 3 3 Câu 39: C Chuẩn hóa CD  1  AB  2 và h  d  D;  AB    SABCD  h 3  AB  CD   h 2 2 Diện tích tam giác DAB là SABD  d  D;  AB   .AB  h  SACD  1 h 2 2 V SM SN 1 1 1 1 1 2 V Ta có S.BMN  .  .   VS.BMN  VS.BAD  . VS.ABCD  S.ABCD 1 VS.BAD SA SD 2 2 4 4 4 3 6 V SN 1 1 1 1 V Lại có S.BCN    VS.BCN  VS.BCD  . VS.ABCD  S.ABCD  2  VS.BCD SD 2 2 2 3 6 1 V 1 Lấy 1   2  , ta được VS.BMN  VS.BCN  2. VS.ABCD  S.BCNM  6 VS.ABCD 3 Câu 40: C 15 7 Tam giác BCD có CD  4; BD  5; BC  6  SBCD  p  p  a  p  b  p  c   4 Công thức tính nhanh: Tứ diện gần đều ABCD có AB  CD  a, BC  AD  b, AC  BD  c Suy ra thể tích tứ diện ABCD là V  2 12 a 2  b2  c2  b 2  c2  a 2  a 2  c2  b 2  15 6 Áp dụng với AB=CD=4,AC  BD  5, AD=BC=6   VABCD  4 Mặt khác VABCD  d  A,  BCD   .SBCD  d  A,  BCD    1 3V 3 42  3 SBCD 7 Câu 41: A D N A C M B Ta có S ABCD không đổi và SMNC  S ABCD  S ABMND  S ABCD  2S AMN  S ABCD  a.MN . Thể tích S.MNC lớn nhất khi và chỉ khi diện tích tam giác MNC lớn nhất. SMNC lớn nhất khi và 1 chỉ khi MN ngắn nhất. Khi đó MN vuông góc với AC . Hơn nữa, sin ACD  . Suy ra, tam giác 2 2a a2 3 a3 3 MNC là tam giác đều với MN  . Do đó, S MNC  và VS .MNC  . 3 3 3 Câu 49: B Gọi I  a; b; c  là tâm mặt cầu ngoại tiếp tứ diện ABCD . Phương trình mặt cầu ngoại tiếp tứ diện ABCD có dạng  S  : x2  y 2  z 2  2ax  2by  2cz  d  0, a 2  b 2  c 2  d  0 . Vì A, B, C , D nên ta có hệ phương trình Trang 12/13
  13.  4  4a  d  0 4  4b  d  0  d  4a  4  d  4a  4    d  0   a  b  c  a  b  c  .  4  4c  d  0 12  12a 4a  4  0 12  12a 4a  4  0  a  b  c  1 12  4a 4b  4c  d  0   Suy ra I 1;1;1 , do đó bán kính mặt cầu là R  IA  3 . Câu 50: A + Đường thẳng d đi qua A 1; 2; 3 và có vectơ chỉ phương u   3; 4; 4  có phương trình là  x  1  3t   y  2  4t .  z  3  4t  + Ta có: MB 2  AB2  MA2 . Do đó  MB max khi và chỉ khi  MAmin . + Gọi E là hình chiếu của A lên  P  . Ta có: AM  AE . Đẳng thức xảy ra khi và chỉ khi M  E . Khi đó  AM min  AE và MB qua B nhận BE làm vectơ chỉ phương. + Ta có: B  d nên B 1  3t; 2  4t; 3  4t  mà B   P  suy ra 2 1  3t   2  2  4t    3  4t   9  0  t  1  B  2; 2;1 . + Đường thẳng AE qua A 1; 2; 3 , nhận nP   2; 2; 1 làm vectơ chỉ phương có phương trình là  x  1  2t   y  2  2t . Suy ra E 1  2t; 2  2t; 3  t  .  z  3  t  Mặt khác, E   P  nên 2 1  2t   2  2  2t    3  t   9  0  t  2  E  3; 2; 1 . uur + Do đó đường thẳng. MB . qua B (- 2; - 2;1), có vectơ chỉ phương BE = (- 1;0; - 2) nên có phương ìï x = - 2 - t ïï trình là í y = - 2 . Thử các đáp án thấy điểm I  1; 2;3 thỏa. ïï ïïî z = 1- 2t Trang 13/13
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2