intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ THI THỬ TỐT NGHIỆP THPT Môn Thi : TOÁN - TRƯỜNG THPT CHÍ LINH

Chia sẻ: Thanh Cong | Ngày: | Loại File: PDF | Số trang:6

64
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử tốt nghiệp thpt môn thi : toán - trường thpt chí linh', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: ĐỀ THI THỬ TỐT NGHIỆP THPT Môn Thi : TOÁN - TRƯỜNG THPT CHÍ LINH

  1. ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM 2010 SỞ GD&ĐT HẢI DƯƠNG TRƯỜNG THPT CHÍ LINH Môn Thi : TOÁN Thời gian làm bài 150 phút, không kể thời gian giao đề. Đề gồm 01 trang Câu 1: (3,0 điểm) Cho hàm số y  x 3  3x  2 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số. 2) Tìm m ( m  ¡ ) để phương trình m( x3  3x  2)  1 có 3 nghiệm thực phân biệt. Câu 2: ( 3,0 điểm) 1) Giải phương trình 2.4 x  3.2 x  2  0 ( x  ¡ )  2 cos x 2) Tính tích phân I   dx 2  sin x 0 3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x)  x  ln(1  3x) trên [-2;0]. Câu 3: (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=BC=a, 0 SA  ( ABC ) , cạnh bên SB tạo với đáy một góc 60 . Tính thể tích khối chóp S.ABC theo a. Câu 4: (1,0 điểm) 1  7i Cho số phức z   (3  2i )(1  3i ) 1  2i Tính mô đun của z và tìm toạ độ điểm biểu diễn hình học của z trong hệ toạ độ Oxy. Câu 5: (2,0 điểm) Trong không gian Oxyz, cho mặt cầu (S), mặt phẳng (P) có phương trình: ( S ) : x 2  y 2  z 2  4 x  2 y  2 z  2  0 ( P) : 2 x  y  2 z  1  0 1) Xác định toạ độ tâm I, tính bán kính r của (S). Xác định vị trí tương đối của (S) và (P). 2) Viết phương trình tham số của đường thẳng d đi qua I và vuông góc với (P). Tìm toạ độ điểm chung của (P) và (S). ………………………………………..HẾT…………………………………………. Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:……………………………………; Số báo danh:http://laisac.page.tl Chữ kí giám thị:……………………………………… 1
  2. H­íng dÉn chÊm TOÁN Chú ý: Chấm xong làm tròn đến 0,5 Câu Nội dung Điểm Câu1 (3,0đ) 1)2,0 đ 1)Khảo sát sự biến thiên và vẽ đồ thị hàm số y  x 3  3x  2 0,25 1. Tập xác định: D  ¡ 2. Sự biến thiên của hàm số * Giới hạn tại vô cực của hàm số. 32 lim y  lim ( x 3  3 x  2)  lim x3 (1   )   x 2 x3 x  x  x  lim y   x  * Lập bảng biến thiên 0,25  x  1  y (1)  4 2 y '  3 x  3; y '  0    x  1  y (1)  0 bảng biến thiên 0,5 x - -1 1 + y’ + 0 - 0 + y 4 + - 0 Hàm số đồng biến trên các khoảng (-  ;-1) và (1;+  ) 0.25 Hàm số nghịch biến trên khoảng (-1;1) Hàm số đạt cực đại tại x=-1 =>ycđ=4 0,25 Hàm số đạt cực tiểu tại x=1=>yct=0 3. Đồ thị 0,25 -Giao của đồ thị hàm số và Ox: y=0=>x=1;x=-2 2
  3. - Giao của đồ thị hàm số và Oy: x=0=>y=2 Thêm điểm x=2=>y=2 Đồ thị hàm số nhận điểm I(0;2) làm tâm đối y 0,25 xứng. x O 2)1,0đ 2) Tìm m ( m  ¡ )để phương trình m( x3  3x  2)  1 (1) có 3 nghiệm thực phân biệt * m=0 => (1) vô nghiệm 0,25 1 3 * m  0 (1)  x  3 x  2  m Số nghiệm của (1) là số giao điểm của đồ thị (C): y  x 3  3x  2 và đường thẳng 0,25 1 1 . d cùng phương với Ox cắt Oy tại điểm có tung độ là . d: y  m m (1)có 3 nghiệm phân biệt d cắt (C) tại 3 điểm phân biệt. 1 m  0 m  0 m  0 1 1    0,5 từ đồ thị hàm số => 0   4     4m  1  m 1 1 4 m 4  m 0 m  4 ; m  0   m  âu 2: 3,0 đ) )1,0đ 1) Giải phương trình 2.4 x  3.2 x  2  0 ( x  ¡ ) (1) 0,5 đặt t  2 x (t  0) t  2 (1)  2t  3t  2  0   2 1 t    2 kết hợp t>0 được t=2 0,5 với t=2 ta có 2 x  2  x  1 3
  4.  )1,0đ 2 cos x 2) Tính tích phân I   0,25 dx 2  sin x 0 §Æt t=2+sinx => dt=cosxdx cos x dt  dx  2  sin x t NÕu x=0 th× t=2 0,25  NÕu x= th× t=3 2 3 dt 3 I=   ln t  ln 3  ln 2  ln 0,5 t 2 2 )1,0đ 3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x)  x  ln(1  3x) trên [-2;0]. 0,25 TXĐ:D=[-2;0] 2  3 x 3 f '( x)  1   1  3 x 1  3x 2 f '( x)  0  x    [2; 0] 3 2 2 f(-2)=-2+ln7; f(0)=0; f ( )    ln 3 3 3 0,25 2 2  max f ( x )  max  f (2), f (0), f ( )   ln 3  0,5 3 3 [ 2;0]  2  min f ( x)  min  f (2), f (0), f ( )   2  ln 7 3 [ 2;0]  4
  5. âu 3: S 1,0 đ) 0,5 C A a a B SA  (ABC)  AB là hình chiếu của SB trên (ABC) · · ·  ( SB, ( ABC ))  ( SB, AB )  SBA  600 Trong tam giác vuông SAB có SA  AB tan 600  a 3 0,5 a2 1 diện tích tam giác ABC: S ABC  AB.BC  2 2 a3 3 1 VS . ABC  SA.S ABC  3 6 âu 4: 1  7i Cho số phức z   (3  2i )(1  3i ) 1,0 đ) 1  2i 0,25 Tính mô đun của z và tìm điểm biểu diễn hình học của z trong hệ toạ độ Oxy. (1  7i )(1  2i )  3  9i  2i  6i 2 z 12  22 1  2i  7i  14i 2   3  11i  3  i  3  11i  6  12i 0,25 5 | z | 62  122  6 5 0,25 điểm biểu diễn hình học của z là A(6;12) 0,25 âu 5: 2,0 đ) )1,0đ 1) Xác định toạ độ tâm I, tính bán kính r của (S). Xác định vị trí tương đối của (S) và 0,5 (P). 5
  6. Phương trình của ( S ) : ( x  2)2  ( y  1) 2  ( z  1)2  4 nên (S) có tâm I(2;1;-1) bán kính r=2 | 2.2  1  2( 1)  1| khoảng cách từ I tới (P) là d ( I , ( P))  2r 22  12  (2)2 0,5 => (S) tiếp xúc với (P) )1,0đ 2) Viết phương trình tham số của đường thẳng d đi qua I và vuông góc với (P). Tìm toạ độ điểm chung của (P) và (S). r (P) có véc tơ pháp tuyến n  (2;1; 2) I d    d đi qua I và nhận véc tơ pháp tuyến của (P) làm véc tơ chỉ phương d  ( P)   x  2  2t   phương trình tham số của d :  y  1  t  z  1  2t  Do (P) tiếp xúc với (S) nên điểm chung của (P) và (S) là giao điểm của d và (P)  x  2  2t (1)  y  1 t (2) Toạ độ giao điểm của (P) và d là nghiệm của hệ    z  1  2t (3) 2 x  y  2 z  1  0(4)  2  t   3  x  2  211 giải hệ ta được  3 vậy (P) và (S) tiếp xúc với nhau tại A( ; ; ) y  1 333  3  1 z  3  6
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2