Đề thi thử tốt nghiệp THPT Toán - PT DTNT Nước Oa năm 2014
lượt xem 2
download
Tham khảo đề thi thử tốt nghiệp THPT Toán - PT DTNT Nước Oa năm 2014 dành cho các em học sinh đang chuẩn bị cho kỳ thi tốt nghiệp, với đề thi này các em sẽ được làm quen với cấu trúc đề thi và củng cố lại kiến thức căn bản nhất.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử tốt nghiệp THPT Toán - PT DTNT Nước Oa năm 2014
- SỞ GD-ĐT QUẢNG NAM KỲ THI THỬ TỐT NGHIỆP THPT NĂM 2014 Trường PT DTNT Nước Oa Môn thi: TOÁN – Giáo dục trung học phổ thông Thời gian làm bài: 150 phút (không kể thời gian giao đề) ĐỀ THAM KHẢO 1 ------------------------------------------------------------------------- I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x 1 Câu I (3,0 điểm). Cho hàm số y có đồ thị (C). x2 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm tất cả các giá trị của tham số m để đường thẳng y mx 1 cắt đồ thị (C) tại hai điểm phân biệt. Câu II (2,5 điểm). 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y x 3 24 ln x trên đoạn 1; e . 2 2) Tính tích phân: I = ( x sin x) xdx . 0 3) Giải phương trình: 9x 72 3x Câu III (1,0 điểm). Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, AB a 2 , AD a , cạnh SA vuông góc với đáy, góc giữa cạnh SC và mặt đáy bằng 300. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD theo a. II – PHẦN RIÊNG – PHẦN TỰ CHỌN (3,0 điểm) Thí sinh chỉ được làm một trong hai phần sau đây (phần 1 hoặc phần 2). 1. Theo chương trình Chuẩn Câu IV.a (2,5 điểm). Trong không gian Oxyz, cho 2 điểm A(2;-3;1), B(5;-2;0), đường thẳng d có x 2 y z 1 phương trình chính tắc và mặt phẳng ( ) : x 2 y 3z 3 0 3 1 2 1) Tính khoảng cách từ A đến mặt phẳng ( ), từ đó suy ra phương trình mặt cầu (S) tâm A, tiếp xúc với mặt phẳng ( ) . 2) Viết phương trình mặt phẳng ( ) đi qua A và vuông góc với d. 3) Chứng minh đường thẳng d cắt mặt phẳng ( ) và tìm toạ độ giao điểm của d và ( ) . i 3 Câu V.a (1,0 điểm). Tìm môđun của số phức z 2 i 2 3i 2. Theo chương trình nâng cao Câu IV.b (2,5 điểm). Cho mặt cầu (S): x 2 y 2 z2 10 x 2 y 26 z 30 0 . 1) Xác định tâm và bán kính của mặt cầu (S) 2) Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) và song song với hai đường thẳng có phương trình: x 7 3t x 5 y 1 z 13 d1 : ; d 2 : y 1 2 t 2 3 2 z 8 1 3 2011 Câu V.b (1,0 điểm). Cho số phức z - i . Hãy tính ( 1 z z 2 ) . 2 2 ................................................................................... Hết ................................................................................... Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm
- Họ và tên thí sinh: ………………………………… Số báo danh: …………………………. Chữ ký giám thị 1: ……………………………Chữ ký giám thị 2: …………….……………
- Đáp án: Câu Bài làm Điểm 1) (2,0 điểm) Câu I. TXĐ: D = \{2} 0,25 (3,0 điểm) Sự biến thiên: x 1 x 1 lim y lim 1; lim y lim 1 đt y = 1 là tiệm cận ngang x x x 2 x x x 2 0,25 x 1 x 1 lim y lim ; lim y lim đt x = 2 là tiệm cận đứng x2 x2 x2 x2 x2 x2 3 0,25 y' 0, x 2 ; y' không xác định khi x = 2 ( x 2)2 Hàm số nghịch biến trên các khoảng (; 2) và (2; ) 0,25 -Cực trị: Hàm số không có cự trị. 0,25 -Bảng biến thiên: x 2 + y’ 0,25 1 y 1 Đồ thị: Giao điểm của đồ thị với trục Ox là điểm (-1;0) Giao điểm của đồ thị với trục Oy là điểm (0;-1/2) y 0,5 1 I O 2 -1 -1/2 x 2) (1,0 điểm) x 1 Lập phương trình hoành độ giao điểm: mx 1 (1) x2 0,25 Biến đổi (1) về dạng: mx 2 2mx 3 0 (2) 0,25 Ycbt (1) có 2 nghiệm phân biệt (2) có 2 nghiệm phân biệt khác 2 0,25 m2 3m 0 m 3 2 0,25 m.2 2m.2 3 0 m 0 1) (1,0 điểm) Câu II. 24 0,5 y ' 3 x 2 ; y ' 0 3x 3 24 0 x 2 (3,0 điểm) x y(2) 8 24ln 2; y (1) 1; y (e) e3 24 0,25 Vậy max y=y (2) = -8 + 24ln 2; min y y (1) 1 0,25 [1;e ] [1;e ]
- 2) (1,0 điểm) 2 2 3 2 I = ( x sin x) xdx = 2 dx x sin xdx 0 x 0 0 0,25 2 3 5 2 2 2 2 Tính A = x dx ( ) 2 2 ;B= x sin xdx 1 0,5 0 5 2 20 0 2 2 0,25 Từ đó ta có I = A + B = +1 20 3) (1,0 điểm) 9 x 72 3x (3x ) 2 3x 72 0 0,25 Đặt t 3 x 0 , ta có phương trình t 2 t 72 0 0,25 Giải theo t và kết hợp điều kiện dược nghiệm t = 9 x = 2 0,5 S Góc giữa SC với đáy là góc giữa SC với hình Câu III chiếu AC của nó trên mặt đáy, đó là góc SCA = Hình: (1,0 điểm) 300. 0,25 M I Gọi O là tâm hình chữ nhật ABCD. Trong mặt A D phẳng (SAC), trung trực của SA cắt trục của 0,25 O đường tròn ngoại tiếp hình chữ nhật ABCD tại I. B C Mặt cầu ngoại tiếp hình chóp SABCD có tâm I và bán kính R = IA; a 3 AC AB 2 BC 2 a 3 , SA AC.tan 300 a , IO ; OA a R=IA a 0,5 2 2 1) (0,75 điểm) | 2 2( 3) 3.1 3 | 0,25 Câu IV.a d ( A,( )) 14 . 12 22 32 (2,5 điểm) Mặt cầu (S) tiếp xúc với ( ) thì có bán kính R = 14 phương trình: ( x 2) 2 ( y 3)2 ( z 1)2 14 0,5 2) (0,75 điểm) d có vectơ chỉ phương d (3;1; 2) . Mặt phẳng ( ) vuông góc với d thì nhận 0,25 d (3;1; 2) làm vectơ pháp tuyến, và ( ) đi qua A phương trình: 3( x 2) 1( y 3) 2( z 1) 0 hay 3 x y 2 z 5 0 0,5 3) (1,0 điểm) d có vectơ chỉ phương d (3;1; 2) , mặt phẳng ( ) có vectơ pháp tuyến 0,25 n(1; 2;3) . Ta có d .n 7 0 nên ta có d cắt ( ) x 2 3t 0,25 Phương trình tham số của d: y t z 1 2t Gọi M là giao điểm của d và ( ) Vì M d nên M có tọa độ (2 3t ; t ; 1 2t ) 2 0,25 Vì M ( ) nên có: 2 3t 2t 3(1 2t ) 3 0 hay t 7 8 2 11 Vậy M ( ; ; ) 0,25 7 7 7
- i 3 (i 3)(2 3i ) 3 11i Câu V.a z 2i =2i 2i 0,5 2 3i (2 3i)(2 3i ) 13 (1,0 điểm) 2 2 29 2 29 2 0,5 = i | z | 5 13 13 13 13 1) (1,0 điểm) Câu IV.b Tâm I (5; 1; 13) , bán kính R = 15 1,0 (2,5 điểm) 2) (1,5 điểm) Mặt phẳng (P) cần tìm nhận vectơ n d1 d 2 (4; 6;5) làm vectơ pháp tuyến 0,5 nên pt có dạng: 4 x 6 y 5 z m 0 Vì (P) tiếp xúc với mặt cầu (S) nên ta có d(I, (P)) = R = 15 0,25 Từ đó giải phương trình tìm được m = 51 15 77 0,5 Vậy có 2 mặt phẳng thỏa y/c: 4 x 6 y 5z 51 15 77 0 0,25 Câu V.b 1 3 1 3 2 1 3 1 3 3 (1,0 điểm) 1 z z2 1 i ( i) 1 i i 0 1,0 2 2 2 2 2 2 4 2 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 - Trường THPT Chuyên Lam Sơn, Thanh Hóa (Lần 2)
6 p | 10 | 2
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Sở GD&ĐT Sơn La (Lần 2)
7 p | 5 | 2
-
Đề thi thử tốt nghiệp THPT môn Hóa học năm 2024 - Trường THPT Võ Thị Sáu, Phú Yên
6 p | 9 | 2
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT Tân Châu, An Giang
14 p | 7 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Sở GD&ĐT Nam Định (Lần 2)
13 p | 13 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT A Nghĩa Hưng, Nam Định (Lần 2)
7 p | 10 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Kim Liên, Nghệ An (Lần 4)
18 p | 5 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Nam Cao, Hà Nam (Lần 1)
14 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Tĩnh Gia 2, Thanh Hóa
20 p | 5 | 1
-
Đề thi thử tốt nghiệp THPT môn Địa lí năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 11 | 1
-
Đề thi thử tốt nghiệp THPT môn Vật lý năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 3 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
6 p | 3 | 1
-
Đề thi thử tốt nghiệp THPT môn Tiếng Anh năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
5 p | 10 | 1
-
Đề thi thử tốt nghiệp THPT môn Sinh học năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
6 p | 4 | 1
-
Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
5 p | 8 | 1
-
Đề thi thử tốt nghiệp THPT môn Hóa học năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 4 | 1
-
Đề thi thử tốt nghiệp THPT môn GDCD năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
6 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Sở GD&ĐT Kiên Giang
7 p | 3 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn