intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề Thi Thử Tốt Nghiệp Toán 2013 - Phần 9 - Đề 8 (có đáp án)

Chia sẻ: Sunshine_1 Sunshine_1 | Ngày: | Loại File: PDF | Số trang:4

79
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi thử tốt nghiệp toán 2013 - phần 9 - đề 8 (có đáp án)', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề Thi Thử Tốt Nghiệp Toán 2013 - Phần 9 - Đề 8 (có đáp án)

  1. KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông CODE 04 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x - 1 Câu I (3,0 điểm): Cho hàm số: y = x- 1 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến với đồ thị (C ) biết tiếp tuyến có hệ số góc bằng – 4. Câu II (3,0 điểm): 1) Giải phương trình: log2 x - log4 (4x 2 ) - 5 = 0 2 p 3 sin x + cos x 2) Tính tích phân: I = ò0 dx cos x 3) Tìm các giá trị của tham số m để hàm số sau đây đạt cực tiểu tại điểm x 0 = 2 y = x 3 - 3m x 2 + (m 2 - 1)x + 2 Câu III (1,0 điểm): · Cho hình chóp S.ABC có đáy là tam giác vuông tại B, BA C = 300 ,SA = AC = a và SA vuông góc với mặt phẳng (ABC).Tính VS.ABC và khoảng cách từ A đến mặt phẳng (SBC). II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn r r r uuur r r Câu IVa (2,0 điểm): Trong không gian với hệ toạ độ (O , i , j , k ) , cho OM = 3i + 2k , mặt cầu (S ) có phương trình: (x - 1)2 + (y + 2)2 + (z - 3)2 = 9 1) Xác định toạ độ tâm I và bán kính của mặt cầu (S ) . Chứng minh rằng điểm M nằm trên mặt cầu, từ đó viết phương trình mặt phẳng (a ) tiếp xúc với mặt cầu tại M. 2) Viết phương trình đường thẳng d đi qua tâm I của mặt cầu, song song với mặt phẳng (a ) , x+1 y- 6 z- 2 đồng thời vuông góc với đường thẳng D : = = . 3 - 1 1 Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: - z 2 + 2z - 5 = 0 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD có toạ độ các đỉnh là A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) 1) Viết phương trình đường vuông góc chung của AB và CD. 2) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD. Câu Vb (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây y = ln x , trục hoành và x = e ---------- Hết --------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: .................................
  2. BÀI GIẢI CHI TIẾT. Câu I: 2x - 1 y= x- 1  Tập xác định: D = ¡ \ {1} - 1  Đạo hàm: y ¢ = < 0, " x Î D (x - 1)2  Hàm số đã cho NB trên các khoảng xác định và không đạt cực trị.  Giới hạn và tiệm cận: lim y = 2 ; lim y = 2 Þ y = 2 là tiệm cận ngang. x®- ¥ x® +¥ lim y = - ¥ ; lim y = + ¥ Þ x = 1 là tiệm cận đứng. x ® 1- x ® 1+  Bảng biến thiên x – 1 + y¢ – – 2 y + y – 2 1  Giao điểm với trục hoành: y = 0 Û 2x - 1 = 0 Û x = 2 3 Giao điểm với trục tung: cho x = 0 Þ y = 1 2,5  Bảng giá trị: x –1 0 1 2 3 2 y 3/2 1 || 3 5/2 1  Đồ thị hàm số như hình vẽ bên đây: 2x - 1 -1 O 1 2 3 x  (C ) : y = x- 1  Tiếp tuyến có hệ số góc bằng –4 nên f ¢ x 0 ) = - 4 ( é é ê - 1= 1 x0 ê = x 3 - 1 1 ê 2 Û ê0 2 Û = - 4 Û (x 0 - 1)2 = Û ê ê (x 0 - 1)2 4 ê - 1= - 1 x0 ê = x 1 ê ê0 ë 2 ë 2 3 2. 3 - 1 æ 3ö  Với x 0 = Þ y0 = 32 = 4 .pttt là: y - 4 = - 4 çx ç ç - ÷ Û y = - 4x + 10 ÷ ÷ 2 - 1 è 2ø 2 1 2. 1 - 1 æ 1ö  Với x 0 = Þ y0 = 12 = 0 . pttt là: y - 0 = - 4 çx - ÷ Û y = - 4x + 2 ç ç ÷ ÷ 2 - 1 è 2ø 2  Vậy, có 2 tiếp tuyến thoả mãn ycbt là : y = - 4x + 2 và y = - 4x + 10 Câu II:  Điều kiện: x > 0. Khi đó, phương trình đã cho tương đương với log2 x - (log4 4 + log4 x 2 ) - 5 = 0 Û log2 x - log2 x - 6 = 0 (*) 2 2  Đặt t = log2 x , phương trình (*) trở thành é = 3 t é log x = 3 é = 23 x t2 - t - 6 = 0 Û êê = - 2 Û ê 2 ê Û êê - 2 (nhận cả hai nghiệm) t ê log2 x = - 2 ê ê = 2 x ë ë ë 1  Vậy, phương trình đã cho có hai nghiệm : x = 8 và x = 4 p p p p sin x + cos x æsin x cos x ö  I = ò3 dx = ò 3 ç ÷dx = 3 sin x dx + 0 cos x ç 0 çcos x è + cos x ÷ ÷ ø ò0 cos x ò0 3 1.dx
  3. p sin x .dx  Với I 1 = ò0 3 , ta đặt t = cos x Þ dt = - sin x .dx Þ sin x .dx = - dt cos x p Đổi cận: x 0 3 1 t 1 2 1 æ dt ö - ÷ 1 dt 1 1 Thay vào: I 1 = ò 2 ç ç ç ÷ = ò1 ÷ = ln t 1 = ln 1 - ln = ln 2 1 è t ø t 2 2 2 p p p  Với I 2 = ò0 3 1.dx = x 3 0 = 3 p  Vậy, I = I 1 + I 2 = ln 2 + 3  y = x 3 - 3m x 2 + (m 2 - 1)x + 2 có TXĐ D = ¡  y ¢ = 3x 2 - 6m x + m 2 - 1  y ¢ = 6x - 6m ¢ ìf¢ = 0 ï (2) ì 3.22 - 6m .2 + m 2 - 1 = 0 ï ï ï  Hàm số đạt cực tiểu tại x 0 = 2 Û í Û í ï f ¢(2) > 0 ï ¢ ï 6.2 - 6m > 0 ï î ï î ì m 2 - 12m + 11 = 0 ï ì m = 1 hoac m = 11 ï ï ï Û í Û í Û m = 1 ï 12 - 6m > 0 ï ïm < 2 ï ï î î  Vậy, với m = 1 thì hàm số đạt cực tiểu tại x 0 = 2 Câu III Theo giả thiết, SA ^ A B , BC ^ A B , BC ^ SA S Suy ra, BC ^ (SA B ) và như vậy BC ^ SB a 3 a a  Ta có, A B = A C . cos 300 = và BC = A C . sin 300 = 2 2 a A C 3a 2 a 7 SB = SA 2 + A B 2 = a2 + = 4 2 B 1 1 a 3 a a2 3 1 a3 3  S D A BC = A B .BC = × × = Þ V S .A BC = SA ×S D A BC = 2 2 2 2 8 3 24 1 1 a 7 a a2 7  S D SBC = SB .BC = × × = 2 2 2 2 8 1 3 S .A BC V a3 3 8 a 21  V S .A BC = d (A,(SBC )).S D SBC Þ d (A ,(SBC )) = = 3× × = 3 S D SBC 24 a 2 7 7 THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: uuur r r  OM = 3i + 2k Þ M (3; 0;2) và (S ) : (x - 1)2 + (y + 2)2 + (z - 3)2 = 9  Mặt cầu có tâm I (1; - 2; 3) và bán kính R = 3  Thay toạ độ điểm M vào phương trình mặt cầu: (3 - 1)2 + (0 + 2)2 + (2 - 3)2 = 9 là đúng Do đó, M Î (S ) r uuu r  (a ) đi qua điểm M, có vtpt n = IM = (2;2; - 1)  Vậy, PTTQ của (a ) là: 2(x - 3) + 2(y - 0) - 1(z - 2) = 0 Û 2x + 2y - z - 4 = 0  Điểm trên d: I (1; - 2; 3) r r  (a ) có vtpt n = (2;2; - 1) và D có vtcp u D = (3; - 1;1) nên d có vtcp
  4. r r r æ 2 - 1 - 1 2 2 2ö ÷ ç ç ÷ = (1; - 5; - 8) u = [n , u D ] = ç 1 ; ; ÷ ÷ ç- ç è 1 1 3 3 - 1ø ÷ ìx = 1+ t ï ï ï  Vậy, PTTS của d là: ï y = - 2 - 5t (t Î ¡ ) í ï ï z = 3 - 8t ï ï î 2 Câu Va: - z + 2z - 5 = 0 (*)  Ta có, D = 22 - 4.(- 1).(- 5) = - 16 = (4i )2  Vậy, pt (*) có 2 nghiệm phức phân biệt - 2 - 4i - 2 + 4i z1 = = 1 + 2i và z 2 = = 1 - 2i - 2 - 2 THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: uuu r uuu r  Ta có, A B = (0;1; 0) và CD = (1;1; - 1)  Gọi M,N lần lượt là điểm nằm trên AB và CD thì toạ độ của M,N có dạng M (1;1 + t ;1), N (1 + t ¢ + t ¢ - t ¢ ;1 ;2 ) uuuu r Þ MN = (- t ¢ t - t ¢ t ¢- 1) ; ;  MN là đường vuông góc chung của AB và CD khi và chỉ khi uuu uuuu r r ì ï A B .MN = 0 ì t - t ¢= 0 ï ï 1 ï uuu uuuu í r r Û ï í ¢ Û t = t ¢= ï CD .MN = 0 ï ï- t + t - t ï ¢- t ¢+ 1 = 0 2 ï î î æ 3 ö æ3 3 3 ö uuuu æ 1 r 1ö r  Vậy, M ç1; ;1÷, N ç ; ; ÷ Þ MN = ç- ;0; - ÷ hay u = (1; 0;1) là vtcp của d cần tìm ç ÷ ç ÷ è ç 2 ø ç2 2 2 ø ÷ ÷ ç ç 2 ÷ ÷ è è 2ø ìx = 1+ t ï ï ï ï 3 PTCT của đường vuông góc chung cần tìm là: ï y = í ï (t Î ¡ ) ï 2 ïz = 1+ t ï ï î  Phương trình mặt cầu (S ) có dạng: x + y + z 2 - 2ax - 2by - 2cz + d = 0 2 2  Vì A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) thuộc (S ) nên: ì ï 3 - 2a - 2b - 2c + d = 0 ì ï 2a + 2b + 2c - d = 3 ì ï d = 2a + 2b + 2c - 3 ì ïd = 6 ï ï ï ï ï ï ï ï ï 6 - 2a - 4b - 2c + d = 0 ï ï 2a + 4b + 2c - d = 6 ï ï - 2b ï = - 3 ïb = 3 / 2 ï ï ï Û í Û í ï Û ï í í ï 6 - 2a - 2b - 4c + d = 0 ï ï 2a + 2b + 4c - d = 6 ï ï ï 2b - 2c = 0 ïc = 3 / 2 ï ï ï 9 - 4a - 4b - 2c + d = 0 ï ï 4a + 4b + 2c - d = 9 ï ï - 2a - 2b + 2c = - 3 ï ïa = 3 / 2 ï ï î ï ï î ï ï î ï ï î 2 2 2  Vậy, phương trình mặt cầu là: x + y + z - 3x - 3y - 3z + 6 = 0 Câu Vb: Cho y = ln x = 0 Û x = 1  Diện tích cần tìm là: e e S = ò1 ln x dx = ò1 ln xdx ì ï ì u = ln x ï ï ï du = 1 dx ï  Đặt í Þ í . Thay vào công thức tính S ta được: ï dv = dx ï ïv = x x ï î ï î e e e S = x ln x 1 - ò1 dx = e ln e - 1ln 1 - x 1 = e - 0 - e + 1 = 1 (đvdt)  Vậy, diện tích cần tìm là: S = 1 (đvdt)
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2