intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề Thi Thử Tuyển Sinh Lớp 10 Toán 2013 - Đề 81

Chia sẻ: May May | Ngày: | Loại File: PDF | Số trang:2

37
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi thử tuyển sinh lớp 10 toán 2013 - đề 81', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề Thi Thử Tuyển Sinh Lớp 10 Toán 2013 - Đề 81

  1. SỞ GIÁO DỤC&ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 TỈNH BÀ RỊA – VŨNG TÀU Năm học 2009-2010 ĐỀ CHÍNH THỨC Ngày thi : 02 – 07 – 2009 Môn thi: Toán Thời gian làm bài : 120 phút Bài 1 ( 2 điểm ) a/ Giải phương trình: 2x2 – 3x – 2 = 0 2 x  3 y  5 b/ Giải hệ phương trình:  3 x  2 y  1 Bài 2 ( 2 điểm) 3 Cho hàm số y = x 2 có đồ thị là parabol (P) và hàm số y = x + m có đồ thị là đường 2 thẳng (D) . a/ Vẽ parabol (P) b/ Tìm giá trị của m để (D) cắt (P) tại hai điểm phân biệt. Bài 3 (2,5 điểm) a/ Rút gọn biểu thức : M= 3  x   2  x  2 2 ( x  0) 1 2 x b/ Tìm giá trị của k để phương trình x2 – (5 + k)x + k = 0 có hai nghiệm x1 , x2 thoả mãn điều kiện x12 + x22 = 18 Bài 4 ( 3 điểm) Cho nửa đường tròn tâm O có đường kính AB = 2R. Ax, By là các tia vuông góc với AB ( Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thay đổi trên nửa đường tròn ( M khác A, B), kẻ tiếp tuyến với nửa đường tròn lần lượt cắt Ax, By tại C và D. a/ Chứng minh tứ giác ACMO nội tiếp. 1 1 1 b/ Chứng minh OC vuông góc với OD và 2  2  2 OC OD R c/ Xác định vị trí của M để ( AC + BD ) đạt giá trị nhỏ nhất Bài 5 ( 0,5 điểm) Cho a + b , 2a và x là các số nguyên. Chứng minh y = ax2 + bx + 2009 nhận giá trị nguyên. ----------------- HẾT -------------- GỢI Ý ĐÁP ÁN (Câu khó)
  2. x y D M C A B O Bài 4: · · a. Xét tứ giác ACMO có CAO  CMO  900 => Tứ giác ACMO nội tiếp. b. Vì AC và CM là tiếp tuyến của (O) =>OC là tia phân giác của góc AOM (t/c) Tương tự DM và BD cũng là tiếp tuyến của (O) => OD là tia phân giác của góc BOM (t/c) Mặt khác · · AOM kề bù với BOM => CO OD. * Ta có COD vuông tại O và OM là đường cao => theo hệ thức lượng trong tam giác 1 1 1 1 vuông ta được 2  2  2  2 OC OD OM R c. Vì Ax, By, CD là các tiếp tuyến cắt nhau tại C và D nên ta có CA = CM , MD = DB => AC + BD = CM + MD = CD Để AC + BD nhỏ nhất thì CD nhỏ nhất. Mà C, D thuộc hai đường thẳng // => CD nhỏ nhất khi CD Ax và By => M là điểm chính giữa cung AB. Bài 5: Vì a+b, 2a Z => 2(a+b) – 2a  Z => 2b  Z Do x  Z nên ta có hai trường hợp: * Nếu x chẵn => x = 2m (m Z) => y = a.4m2 + 2m.b +2009 = (2a).2m2 +(2b).m +2009 Z. * Nếu x lẻ => x = 2n +1 (nZ) => y = a(2n+1)2 + b(2n+1) +2009 = (2a).(2m2 + 2m) + (2b)m + (a + b) + 2009 Z. Vậy y = ax2 + bx +2009 nhận giá trị nguyên với đk đầu bài.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0