intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi toán quốc gia bảng A năm 2000

Chia sẻ: Nguyễn Xuân Anh | Ngày: | Loại File: DOC | Số trang:2

270
lượt xem
34
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo về đề thi môn toán quốc gia năm học 1999-2000 môn Toán Bảng A.

Chủ đề:
Lưu

Nội dung Text: Đề thi toán quốc gia bảng A năm 2000

  1. ĐỀ THI QUỐC GIA NĂM HỌC 1999-2000 MÔN : TOÁN (Bảng A) Ngày thi thứ nhất Bài 1 : Cho c là một số thực dương . Dãy số {x n }, n = 0,1,2,…., được xây dựng theo cách sau : x n+1 = c − c + xn (n=0,1,2,….) nếu các biểu thức dưới căn là không âm . Tìm tất cả các giá trị của c đề với mọi giá trị ban đầu x 0 ∈ (0,c) dãy {x n } được xác định với mọi giá trị n và tồn tại giới hạn hữu hạn lim x n khi n → ∞ . Bài 2 : Trên mặt phẳng cho trước hai đường tròn (O 1 ,r 1 ) và (O 2 ,r 2 ). Trên đường tròn (O 1 ,r 1 ) lấy một điểm M 1 và trên đường tròn (O 2 ,r 2 ) lấy một điểm M 2 sao cho đường thẳng O 1 M 1 cắt đường thẳng O 2 M 2 tại một điểm Q. Cho M 1 chuyển động trên đường tròn (O 1 ,r 1 ) , M 2 chuyển động trên đường tròn (O 2 ,r 2 ) cùng theo chiều kim đồng hồ và với vận tốc góc như nhau . 1/ Tìm quĩ tích trung điểm đoạn thẳng M 1 M 2 . 2/ Chứng minh rằng đường tròn ngoại tiếp tam giác M 1 QM 2 luôn đi qua một điểm cố định . Bài 3 : Cho đa thức : P(x) = x 3 + 153x 2 - 111x + 38 1/ Chứng minh rằng trong đoạn [1;3 2000 ] tồn tại ít nhất 9 số nguyên dương a sao cho P(a) chia hết cho 3 2000 2/ Hỏi trong đoạn [1;3 2000 ] có tất cả bao nhiêu số nguyên dương a mà P(a) chia hết cho 3 2000 ? --------------------
  2. ĐỀ THI QUỐC GIA NĂM HỌC 1999-2000 MÔN : TOÁN (Bảng A) Ngày thi thứ hai Bài 4 : Cho trước góc α với 02 đa thức P n (x) chia hết cho g(x) Bài 5 : Tìm tất cả các số tự nhiên n>3 sao cho tồn tại n điểm trong không gian thoả mãn đồng thời các các tính chất sau đây : a/ Không có ba điểm nào trong chúng thẳng hàng . b/ Không có bốn điểm nào trong chúng cùng nằm trên một đường tròn c/ Tất các các đường trong đi qua ba điểm trong chúng đểu có bán kính bằng nhau. Bài 6 : Với mỗi đa thức hệ số thực P(x) , kí hiệu A P là tập hợp các số thực x sao cho P(x) = 0 . Tìm số phần tử nhiều nhất có thể có của A P khi P(x) thuộc tập hợp các đa thức có hệ số thực với bậc ít nhất là 1 và thoả mãn đẳng thức : P(x 2 - 1) = P(x).P(-x) với mọi giá trị thực x --------------------
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2