intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi tốt nghiệp THPT môn toán_Đề số 69

Chia sẻ: Bibi_2 Bibi_2 | Ngày: | Loại File: PDF | Số trang:2

41
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi tốt nghiệp thpt môn toán_đề số 69', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi tốt nghiệp THPT môn toán_Đề số 69

  1. ĐỀ SỐ 69 CÂU1: (2 điểm) Giải bất phương trình: 1) 2 2 2 x  8x  15  x  2 x  15  4 x  18x  18 2) Xác định giá trị của a để hệ bất phương trình: x  3y  x  y 2  a  có nghiệm duy nhất.  x  y 2  3y  x  a  CÂU2: (1 điểm) Giải phương trình: cos2x + cos4x + cos6x = cosxcos2xcos3x + 2 CÂU3: (3 điểm) 1) Cho hàm số: y = 2x3 - 3(2m + 1)x2 + 6m(m + 1)x + 1 a) Với các giá trị nào của m thì đồ thị (Cm) của hàm số có hai điểm cực trị đối xứng nhau qua đường thẳng y = x + 2. b) (C0) là đồ thị hàm số ứng với m = 0. Tìm điều kiện của a và b để đường thẳng y = ax + b cắt (C0) tại ba điểm phân biệt A, B, C sao cho AB = BC. Khi đó chứng minh rằng đường thẳng y = ax + b luôn đi qua một điểm cố định.  2 1  sin x  1  cos x dx 2) Tính tích phân: 0 CÂU4: (2 điểm) Cho các đường tròn: (C): x2 + y2 = 1 (Cm): x2 + y2 - 2(m + 1)x + 4my = 5 1) Chứng minh rằng có hai đường tròn C m 1  , C m 2  tiếp xúc với đường tròn (C) ứng với hai giá trị m1, m2 của m. 2) Xác định phương trình các đường thẳng tiếp xúc với cả hai đường tròn C m 1  , C m 2  ở trên. CÂU5: (2 điểm) Cho hai đường thẳng chéo nhau (d), (d') nhận đoạn AA' = a làm đoạn vuông góc chung (A  (d), A'  (d')). (P) là mặt phẳng qua A' và vuông góc
  2. với (d'). (Q) là mặt phẳng di động nhưng luôn song song với (P) và cắt (d), (d') lần lượt tại M, M'. N là hình chiếu vuông góc của M trên (P), x là khoảng cách giữa (P) và (Q),  là góc giữa (d) và (P). 1) Tính thể tích hình chóp A.A'M'MN theo a, x, . 2) Xác định tâm O của hình cầu ngoại tiếp hình chóp trên. Chứng minh rằng khi (Q) di động thì O luôn thuộc một đường thẳng cố định và hình cầu ngoại tiếp hình chóp A.A'M'MN cũng luôn chứa một đường tròn cố định.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2