intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi tuyển sinh lớp 10 môn Toán năm 2012-2013 - Trường THCS Quỳnh Lập

Chia sẻ: Tran Vinh | Ngày: | Loại File: PDF | Số trang:4

181
lượt xem
23
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu đề thi tuyển sinh lớp 10 môn Toán năm 2012-2013 của trường THCS Quỳnh Lập dành cho quý thầy cô và các bạn học sinh lớp 9 nhằm củng cố kiến thức và luyện thi môn Toán với chủ đề: Rút gọn biểu thức, phương trình bậc hai.

Chủ đề:
Lưu

Nội dung Text: Đề thi tuyển sinh lớp 10 môn Toán năm 2012-2013 - Trường THCS Quỳnh Lập

  1. TRƯỜNG THCS QUỲNH LẬP KỲ THI TUYỂN SINH LỚP 10 THPT ĐỀ THI THỬ NĂM HỌC 2012 – 2013 Môn thi: TOÁN Thời gian làm bài: 120 phút (không kể thời gian giao đề) Câu 1. (3,0 điểm)  x 1  x 1 Cho A    x 2  x4: x 2    a/ Nêu điều kiện xác định và rút gọn biểu thức A. 3 b/ Tìm x sao cho A  . 5 c/ Tìm giá trị nhỏ nhất của biểu thức: P= (x – 4)A. Câu 2. (2,0 điểm) Cho phương trình bậc hai x2 – 2(m - 1)x + 2m – 4 = 0 (1), ( m là tham số) a/ Giải phương trình khi m = 3. b/ Với x1, x2 là nghiệm của phương trình (1). Tìm giá trị của m để biểu thức: B= x1  x2 đạt giá trị nhỏ nhất. Câu 3. (1,5 điểm) Một thửa ruộng hình chữ nhật có chu vi bằng 400 m. Nếu tăng chiều rộng 20 m, giảm chiều dài 30 m thì diện tích không đổi. Tính diện tích của thửa ruộng. Câu 4. (3,5 điểm) Cho đường tròn tâm O đường kính AB=2R. Gọi M là một điểm bất kỳ thuộc đường tròn (O) khác A và B. Các tiếp tuyến của (O) tại A và M cắt nhau tại E. Vẽ MP vuông góc với AB (P thuộc AB), vẽ MQ vuông góc với AE (Q thuộc AE). a) Chứng minh rằng AEMO là tứ giác nội tiếp đường tròn . b) Gọi K là giao điểm của EB và MP. Chứng minh: K là trung điểm của MP. c) Đặt AP = x. Tính MP theo R và x. Tìm vị trí của M trên (O) để tứ giác APMQ có diện tích lớn nhất. . ------ Hết ------
  2. TRƯỜNG THCS QUỲNH LẬP HƯỚNG DẪN CHẤM ĐỀ THI THỬ VÀO LỚP 10 NĂM HỌC 2012 – 2013 Môn: Toán Câu Nội dung Điểm x  0 1 (3 đ)  0,5 ĐKXĐ: x  1 x  4  x 1 1,0 A a/ x 2 3 Để A 5 x 1 3   0,25 x 2 5 b/ 11  x 2 0,25 121 x (tmdk ) 4 3 121 0,25 Vậy: để A  thì x= 5 4 2 P  x 3 x  2 0,25 2  3   1  1  x      0,25  2  4  4 9 c/ Dấu “=” xảy ra khi x  4 1 9 0,25 Vậy: GTNN của P  khi x 4 4 2 (2 đ) Thay m = 3 vào PT (1) ta được pt: x2 – 4x +2 = 0 0,25 x1  2  2 Giải pt ta được: 0,5 x2  2  2 a/ x1  2  2 0,25 Vậy: với m = 3 thì pt (1) có 2 nghiệm: x2  2  2 Để pt (1) có nghiệm x1, x2 thì: 2 '   m  2   1  0m 2 ( vì  m  2 0 ) 0,25 Theo định lí Vi- ét ta có: x1x2 = 2m- 4; x1 + x2 = 2m - 2 b/ 0,5
  3. 2 2 Nên B  x1  x2   4 x1 x2   2m  4  4  4 2 0,25 Dấu “=” xảy ra khi m= 2 Vậy: GTNN của B  2 khi m2 3 Gọi x ( m) là chiều rộng thửa ruộng HCN (1,5 đ) y (m) là chiều dài thửa ruộng HCN ( đk: y > x > 0, y > 30) 0,25 Vì chu vi mảnh đất bằng 400 m nên ta có pt: x + y = 200 (1) 0,25 tăng chiều rộng 20 m ta được: x + 20 (m) giảm chiều dài 30 m ta được: y – 30 (m) thì diện tích không đổi nên ta có pt: (x+20)(y- 30) = xy (2) 0,25  x  y  200 Từ (1), (2) ta có hpt:  0,25 30 x  20 y  600  x  68 Giải hpt: ta được  ( tmđk) 0,25  y  132 Vậy: Diện tích thửa ruộng là: 8976 ( m2) 0,25 0,5 Q M E K 4 (3,5 đ) A B P O Xét tứ giác AEMO có : 0,25 a/ EAO  900 (vì AE là tiếp tuyến của (O)) và EMO  900 (vì EM là tiếp tuyến của (O)) 0,25  EAO  EMO  900  900  1800 0,25 nên tứ giác AEMO là tứ giác nội tiếp.( tổng số đo 2 góc đối = 1800) 0,25 hai tam giác AEO và MPB đồng dạng vì chúng là 2 tam giác vuông có 1 góc 0,25 bằng nhau và AOE  ABM , vì OE // BM AO AE =>  (1) 0,25 BP MP b/
  4. KP BP 0,25 Mặt khác, vì KP//AE, nên ta có tỉ số  (2) AE AB Từ (1) và (2) ta có : AO.MP = AE.BP = KP.AB, mà AB = 2.OA => MP = 2.KP 0,25 Vậy K là trung điểm của MP dễ dàng chứng minh được : 4 a bcd c/ abcd    (*) Dấu “=” xảy ra khi và chỉ khi a = b = c = d  4  0,25 (BĐT Cauchy với 4 số không âm) MP = MO 2  OP 2  R 2  (x  R)2  2Rx  x 2 Ta có: S = SAPMQ = MP.AP  x 2Rx  x 2  (2R  x)x 3 0,25 S đạt max  (2R  x)x 3 đạt max  x.x.x(2R – x) đạt max x x x x  . . (2R  x) đạt max . Áp dụng (*) với a = b = c = 3 3 3 3 4 x x x 1 x x x  R4 0,25 Ta có : . . (2R  x)  4     (2R  x)   3 3 3 4 3 3 3  16 x 3 0,25 Do đó S đạt max   (2R  x)  x  R . 3 2 ( HS giải bằng cách khác đúng vẫn cho điểm tối đa )
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2