Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Hưng Yên (2012-2013)
lượt xem 2
download
Tham khảo đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Hưng Yên (2012-2013) dành cho các bạn học sinh lớp 9 và quý thầy cô tham khảo, để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Hưng Yên (2012-2013)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT HƯNG YÊN NĂM HỌC 2012 - 2013 ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) PHẦN A: TRẮC NGHIỆM KHÁCH QUAN (2 điểm) Từ câu 1 đến câu 8, hãy chọn phương án đúng và viết chữ cái đứng trước phương án đó vào bài làm Câu 1: giá trị của biểu thức 2 8 bằng: A. 10 B. 3 2 C. 6 D. 24 Câu 2: Biểu thức x 1 x 2 có nghĩa khi: A. x < 2 B. x 2 C. x 1 D. x 1 Câu 3: đường thẳng y = (2m – 1)x + 3 song song với đường thẳng y = 3x – 2 khi: A. m = 2 B. m = - 2 C. m 2 D. m 2 2 x y 3 Câu 4: Hệ phương trình có nghiệm (x;y) là: x y 3 A. (-2;5) B. (0;-3) C. (1;2) D. (2;1) Câu 5: Phương trình x2 – 6x – 5 = 0 có tổng hai nghiệm là S và tích hai nghiệm là P thì: A. S = 6; P = -5 B. S = -6; P = 5 C. S = -5; P = 6 D. S = 6; P = 5 Câu 6: Đồ thị hàm số y = -x2 đi qua điểm: A. (1;1) B. (-2;4) C. (2;-4) D. ( 2 ;-1) Câu 7: Tam giác ABC vuông tại A có AB = 4cm; AC = 3cm thì độ dài đường cao AH là: 3 12 5 4 A. cm B. cm C. cm D. cm 4 5 12 3 Câu 8: Hình trụ có bán kính đáy và chiều cao cùng bằng R thì thể tích là A. 2 R 3 B. R 2 C. R 3 D. 2 R 2 PHẦN B: TỰ LUẬN ( 8,0 điểm) Bài 1: (1 điểm) a) Tìm x biết 3 x 2 2 x 2 1
- 2 b) Rút gọn biểu thức: A 1 3 3 Bài 2: (1,5 điểm) Cho đường thẳng (d): y = 2x + m – 1 a) Khi m = 3, tìm a để điểm A(a; -4) thuộc đường thẳng (d). b) Tìm m để đường thẳng (d) cắt các trục tọa độ Ox, Oy lần lượt tại M và N sao cho tam giác OMN có diện tích bằng 1. Bài 3: (1,5 điểm) Cho phương trình x2 – 2(m + 1)x + 4m = 0 (1) a) Giải phương trình (1) với m = 2. b) Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn (x1 + m)(x2 + m) = 3m2 + 12 Bài 4: (3 điểm) Từ điểm A ở bên ngoài đường tròn (O), kẻ các tiếp tuyến Am, AN với đường tròn (M, N là các tiếp điểm). Đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm phân biệt B,C (O không thuộc (d), B nằm giữa A và C). Gọi H là trung điểm của BC. a) Chứng minh các điểm O, H, M, A, N cùng nằm trên một đường tròn, b) Chứng minh HA là tia phân giác của MHN . c) Lấy điểm E trân MN sao cho BE song song với AM. Chứng minh HE//CM. Bài 5 (1,0 điểm) Cho các số thực dương x, y , z thỏa mãn x + y + z = 4. 1 1 Chứng minh rằng 1 xy xz HƯỚNG DẪN GIẢI: Phần trắc nghiệm: Câu Câu Câu Câu Câu Câu Câu Câu B D A D A B B C Phần tự luận: Bài 1: a) Tìm x biết 3 x 2 2 x 2 3x 2 2 x 2 2 x 2 . Vậy x 2 2 b) Rút gọn biểu thức: A 1 3 3 1 3 3 3 1 3 1 . Vậy A 1 Bài 2: a) Thay m = 3 vào phương trình đường thẳng ta có: y = 2x + 2. Để điểm A(a; -4) thuộc đường thẳng (d) khi và chỉ khi: -4 = 2a + 2 suy ra a = -3. 1 m b) Cho x = 0 suy ra y = m – 1 suy ra: ON m 1 , cho y = 0 suy ra x 2 1 m m 1 suy ra OM hayOM 2 2 2
- m 1 Để diện tích tam giác OMN = 1 khi và chỉ khi: OM.ON = 2 khi và chỉ khi m 1 . 2 2 Khi và chỉ khi (m – 1)2 = 4 khi và chỉ khi: m – 1 = 2 hoặc m – 1 = -2 suy ra m = 3 hoặc m = -1 Vậy để diện tích tam giác OMN = 1 khi và chỉ khi m = 3 hoặc m = -1. Bài 3: Cho phương trình x2 – 2(m + 1)x + 4m = 0 (1) a) Giải phương trình (1) với m = 2. b) Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn (x1 + m)(x2 + m) = 3m2 + 12 HD: a) Thay m = 2 vào phương trình (1) ta được phương trình: x2 – 6x + 8 = 0 Khi và chỉ khi (x – 2)(x – 4) = 0 khi và chỉ khi x = 2 hoặc x = 4 Vậy với m = 2 thì phương trình có 2 nghiệm x1 = 2 , x2 = 4. 2 2 b) Ta có ' m 1 4m m 1 0 vậy phương trình luôn có nghiệm với mọi m. S 2 m 1 Áp dụng định lí Vi-et ta có: P 4m Để (x1 + m)(x2 + m) = 3m2 + 12 khi và chỉ khi x1 x2 + (x1 + x2) m - 2 m2 – 12 = 0. S khi và chỉ khi : 4m + m.2(m + 1) – 2m2 – 12 = 0 khi và chỉ khi 6m = 12 khi và chỉ khi m= 2 Bài 5 : M a) Theo tính chất tiếp tuyến căt nhau ta có : E AMO ANO 900 H C B Do H là trung điểm của BC nên ta có: A O AHO 900 Do đó 3 điểm A, M, H, N, O thuộc đường tròn đường kính AO N b) Theo tính chất hai tiếp tuyến cắt nhau ta có: AM = AN Do 5 điểm A, M, H, O, N cùng thuộc một đường tròn nên: AHM AHN (góc nội tiếp chắn hai cung bằng nhau) Do đó HA là tia phân giác của MHN c) Theo giả thiết AM//BE nên MAC EBH ( đồng vị) (1) Do 5 điểm A, M, H, O, N cùng thuộc một đường tròn nên: M MAH MNH (góc nội tiếp chắn cung MH) (2) E H C Từ (1) và (2) suy ra ENH EBH B A O Suy ra tứ giác EBNH nội tiếp Suy ra EHB ENB Mà ENB MCB (góc nội tiếp chắn cung MB) N 3
- Suy ra: EHB MCB Suy ra EH//MC. Bài 5 (1,0 điểm) Cho các số thực dương x, y , z thỏa mãn x + y + z = 4. 1 1 Chứng minh rằng 1 xy xz Hướng dẫn: Vì x + y + z = 4 nên suy ra x = 4 – (y + z) 1 1 11 1 1 1 Mặt khác: 1 1 x do x dương. (*) xy xz x y z y z Thay x = 4 – (y + z) vào (*) ta có : 2 2 1 1 1 1 1 1 4 y z 2 y 2 z 0 y z 0 y z y z y z Luôn đúng với mọi x, y, z dương, dấu bằng xảy ra khi và chỉ khi : y = z = 1, x = 2. 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi tuyển sinh môn Toán năm 2013-2014 - THPT Chuyên Thái Bình
1 p | 482 | 44
-
Bộ đề thi tuyển sinh môn Toán 6 - Trường THPT Trần Đại Nghĩa. Tp Hồ Chí Minh
66 p | 134 | 16
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Bình Định (2012-2013)
3 p | 236 | 11
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Thừa Thiên Huế (2012-2013)
5 p | 112 | 10
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Đồng Nai năm 2012
3 p | 90 | 9
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Hà Nội (2012-2013)
6 p | 70 | 9
-
Bộ 20 đề thi tuyển sinh môn Toán vào lớp 10 THPT năm 2019-2020 có đáp án
100 p | 113 | 7
-
Đề thi tuyển sinh môn Toán 10 chung - Sở GD&ĐT Đồng Nai (2012-2013)
7 p | 156 | 7
-
Bộ 50 đề thi tuyển sinh môn Toán vào lớp 10 THPT chuyên năm 2018-2019 có đáp án
183 p | 288 | 6
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Hòa Bình (2012-2013)
3 p | 107 | 5
-
Đề thi tuyển sinh môn Toán chuyên 10 - Sở GD&ĐT Quảng Nam (2012-2013)
4 p | 81 | 5
-
Bộ 16 đề thi tuyển sinh môn Toán vào lớp 10 THPT năm 2017-2018 có đáp án
77 p | 104 | 5
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Hà Nam (2012-2013)
4 p | 72 | 4
-
Đề thi tuyển sinh môn Toán 6 năm 2010-2011 - Trường THCS Đoàn Thị Điểm
3 p | 140 | 4
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Bắc Ninh (2012-2013)
3 p | 68 | 4
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Hải Dương (2012-2013)
4 p | 107 | 3
-
Bộ 21 đề thi tuyển sinh môn Toán vào lớp 10 THPT năm 2018-2019 có đáp án
99 p | 86 | 3
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Bà Rịa Vũng Tàu (2012-2013)
3 p | 75 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn