Đề thi tuyển sinh vào lớp 10 THPT năm học 2012 - 2013 môn toán - Sở giáo dục đào tạo Phú Thọ
lượt xem 4
download
Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi tuyển sinh vào lớp 10 THPT năm học 2012 - 2013 môn toán - Sở giáo dục đào tạo Phú Thọ để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi tuyển sinh vào lớp 10 THPT năm học 2012 - 2013 môn toán - Sở giáo dục đào tạo Phú Thọ
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH PHÚ THỌ VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG NĂM HỌC 2012-2013 ĐỀ CHÍNH THỨC Môn toán Thời gian làm bài: 120 phút, không kể thời gian giao đề Đề thi có 01 trang ------------------------------------------- Câu 1 (2đ) a) Giải phương trình 2x – 5 =1 b) Giải bất phương trình 3x – 1 > 5 Câu 2 (2đ) 3x y 3 a) Giải hệ phương trình 2 x y 7 1 1 6 b) Chứng minh rằng 3 2 3 2 7 Câu 3 (2đ) Cho phương trình x2 – 2(m – 3)x – 1 = 0 a) Giải phương trình khi m = 1 b) Tìm m để phương trình có nghiệm x1 ; x2 mà biểu thức A = x12 – x1x2 + x22 đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó. Câu 4 (3đ) Cho tam giác ABC vuông tại A. Lấy B làm tâm vẽ đường tròn tâm B bán kính AB.Lấy C làm tâm vẽ đường tròn tâm C bán kính AC, hai đường tròn này cắt nhau tại điểm thứ 2 là D.Vẽ AM, AN lần lượt là các dây cung của đường tròn (B) và (C) sao cho AM vuông góc với AN và D nằm giữa M; N. a) CMR: ABC=DBC b) CMR: ABDC là tứ giác nội tiếp. c) CMR: ba điểm M, D, N thẳng hàng d) Xác định vị trí của các dây AM; AN của đường tròn (B) và (C) sao cho đoạn MN có độ dài lớn nhất. x 2 5 y 2 8 y 3 Câu 5 (1đ) Giải Hệ PT (2 x 4 y 1) 2 x y 1 (4 x 2 y 3) x 2 y ---------------------------Hết-------------------------- GỢI Ý GIẢI Câu 1 (2đ) a) Giải phương trình 2x – 5 = 1 b) Giải bất phương trình 3x – 1 > 5 Đáp án a) x = 3 ; b) x > 2 3x y 3 Câu 2 (2đ) a) Giải hệ phương trình 2 x y 7
- 1 1 6 b) Chứng minh rằng 3 2 3 2 7 Đáp án a) x = 2 ; y = – 3 3 2 3 2 6 b) VT = =VP (đpcm) 92 7 Câu 3 (2đ) Cho phương trình x2 – 2(m – 3)x – 1 = 0 c) Giải phương trình khi m = 1 d) Tìm m để phương trình có nghiệm x1 ; x2 mà biểu thức A = x1 – x1x2 + x22 đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó. 2 Đáp án a) x1 = 2 5 ; x2 = 2 5 e) Thấy hệ số của pt : a = 1 ; c = A – 1 pt luôn có 2 nghiệm Theo vi- ét ta có x1 + x2 =2(m – 3) ; x1x2 = –1 Mà A=x12 – x1x2 + x22 = (x1 + x2 )2 – 3x1x2 = 4(m – 3)2 + 3 3 GTNN của A = 3 m = 3 Câu 4 (3đ) Hướng dẫn a) Có AB = DB; AC = DC; BC chung ABC = DBC (c-c-c) b) ABC = DBC góc BAC =BDC = 900 ABDC là tứ giác nội tiếp c) Có gócA1 = gócM1 ( ABM cân tại B) A gócA4 = gócN2 ( ACN cân tại C) 1 gócA1 = gócA4 ( cùng phụ A2;3 ) 2 3 4 gócA1 = gócM1 =gócA4= gócN2 1 M gócA2 = gócN1 ( cùng chắn cung AD của (C) ) 2 B 1 Lại có A1+A2 + A3 = 900 => M1 + N1 + A3 = 900 2 C Mà AMN vuông tại A => M1 + N1 + M2 = 900 1 2 3 => A3 = M2 => A3 = D1 4 CDN cân tại C => N1;2 = D4 D D2;3 + D1 + D4 =D2;3 + D1 + N1;2 = D2;3 + M2 + N1 + N2 1 2 N = 900 + M2 + N1 + M1 ( M1 = N2) = 900 + 900 = 1800 M; D; N thẳng hàng. d) AMN đồng dạng ABC (g-g) Ta có NM2 = AN2 +AM2 để NM lớn nhất thì AN ; AM lớn nhất Mà AM; AN lớn nhât khi AM; AN lần lượt là đường kính của (B) và (C) Vậy khi AM; AN lần lượt là đường kính của (B) và (C) thì NM lớn nhất. x 2 5 y 2 8 y 3 Câu 5 (1đ): Giải Hệ PT (2 x 4 y 1) 2 x y 1 (4 x 2 y 3) x 2 y Hướng dẫn 2 2 x 5 y 8 y 3 (2 x 4 y 1) 2 x y 1 (4 x 2 y 3) x 2 y x 2 5 y 2 8 y 3(1) (2 x 2 y 1) 2 x y 1 (2 2 x y 1 1) x 2 y (2)
- Từ (2) đặt x +2y = a ; 2x–y –1 = b (a:b 0) Ta dc (2a-1) b =(2b –1) a ( a b )(2 ab 1) = 0 a = b x = 3y + 1 thay vào (1) ta dc 2 2y – y – 1= 0 => y1 = 1 ; y2 = –1/2 => x1 = 4 ; x2 = –1/2 Thấy x2 + 2y2 = –1 < 0 (loại) Vậy hệ có nghiệm (x; y) = (4 ; 1)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Thừa Thiên Huế
5 p | 7 | 2
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Quảng Ninh
1 p | 4 | 2
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Ninh Bình
1 p | 4 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Hòa Bình
1 p | 6 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Bình Định
1 p | 10 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 - Sở GD&ĐT Bình Phước
1 p | 4 | 1
-
Tuyển chọn đề thi tuyển sinh vào lớp 10 Chuyên Toán năm 2024-2025
68 p | 9 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Tây Ninh
5 p | 2 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 - Sở GD&ĐT Sơn La
1 p | 3 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 - Sở GD&ĐT Tuyên Quang
1 p | 7 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Thanh Hóa
5 p | 13 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 có đáp án - Sở GD&ĐT Nam Định
7 p | 7 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 có đáp án - Sở GD&ĐT Quảng Nam
15 p | 10 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Kon Tum
1 p | 3 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Quảng Bình
1 p | 8 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 có đáp án - Sở GD&ĐT Hưng Yên
6 p | 6 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Nghệ An
8 p | 12 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Nam Định
13 p | 8 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn