THE BGG RESOLUTIONS OF IRREDUCIBLE REPRESENTATIONS OF THE GENERAL<br />
LINEAR GROUP<br />
<br />
GLn (C)<br />
Nguyen Thi Phuong Dung<br />
<br />
Banking Academy<br />
Tãm t¾t:<br />
Ph©n lo¹i c¸c biÓu diÔn bÊt kh¶ qui cña nhãm tuyÕn tÝnh tæng qu¸t<br />
<br />
GLC (n) ®· hoµn toµn ®uîc gi¶i quyÕt.<br />
<br />
Trong ®ã ®Æc trung cña c¸c biÓu diÔn cã c«ng thøc m« t¶ rÊt ®Ñp ®Ï th«ng qua ®Þnh thuc cña c¸c ten s¬ ®èi<br />
<br />
Si<br />
<br />
xøng<br />
<br />
cña kh«ng gian vÐc t¬<br />
<br />
V<br />
<br />
cè ®Þnh. Môc ®Ých bµi b¸o nµy lµ miªu t¶ cô thÓ viÖc x©y dùng phuc, mµ<br />
<br />
th«ng qua ®Æc trung Eueler - Poincare cña phøc khíp nµy, ta m« t¶ ®uîc c«ng thøc ®Þnh thøc tæng qu¸t cña c¸c<br />
<br />
GLn (C).<br />
<br />
biÓu diÔn bÊt kh¶ qui cña<br />
<br />
Tõ khãa:<br />
<br />
Gi¶i BGG, §Æc trung Eucler - Poincare, nhãm tuyÕn tÝnh tæng qu¸t, biÓu diÔn bÊt kh¶ qui, biÓu<br />
<br />
diÔn ®a thøc.<br />
<br />
1 Introduction<br />
Let<br />
<br />
Vλ<br />
<br />
be the irreducible polynomial representation of<br />
<br />
T ⊆ GLn (C)<br />
<br />
relative to the maximal torus<br />
with<br />
<br />
the<br />
<br />
character<br />
<br />
GLn (C)<br />
<br />
,<br />
<br />
of<br />
<br />
T<br />
<br />
.<br />
<br />
In<br />
<br />
the<br />
<br />
Grothendieck<br />
<br />
Vλ<br />
<br />
the equivalence class of<br />
<br />
symmetric<br />
<br />
powers<br />
<br />
Sr (V )<br />
<br />
of<br />
<br />
the<br />
<br />
[Vλ ]<br />
<br />
identity. Explicity, the class<br />
<br />
can<br />
<br />
GLn (C)<br />
<br />
ring<br />
<br />
of<br />
<br />
the<br />
<br />
be expressed as<br />
<br />
standard<br />
<br />
representation<br />
<br />
is the determinant of the<br />
<br />
[Sλi −i+j (V )]<br />
<br />
, keeping in mind that<br />
<br />
λ = (λ1 , λ2 , · · · , λn )<br />
Z ⊆n<br />
<br />
of highest weigh<br />
<br />
of diagonal matrix, under the usual identification of<br />
<br />
S0 (V ) = C<br />
<br />
and that<br />
<br />
caterogy<br />
<br />
of<br />
<br />
polynomial<br />
<br />
a polynomial<br />
<br />
V = Cn<br />
n×n<br />
Sr (V ) = 0<br />
<br />
of<br />
<br />
in the<br />
<br />
classes of<br />
<br />
GLn (C)<br />
(i, j)<br />
r