intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình hướng dẫn phân tích quy trình khảo sát đoạn nhiệt tại tiết diện ra của ống p10

Chia sẻ: Dgrw Eryewr | Ngày: | Loại File: PDF | Số trang:5

65
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'giáo trình hướng dẫn phân tích quy trình khảo sát đoạn nhiệt tại tiết diện ra của ống p10', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Giáo trình hướng dẫn phân tích quy trình khảo sát đoạn nhiệt tại tiết diện ra của ống p10

  1. Cho v¸ch ph¼ng n líp, mçi líp thø i dµy δ, cã hÖ sè dÉn nhiÖt λ, 2 mÆt biªn cã nhiÖt ®é kh«ng ®æi, ph©n bè ®Òu vµ b»ng t0, tn cho tr−íc. TÝnh dßng nhiÖt q qua v¸ch vµ nhiÖt ®é c¸c mÆt tiÕp xóc ti, ∀i = 1 ÷ (n-1). 9.4.2.2. Lêi gi¶i Khi æn ®Þnh, dßnh nhiÖt q qua mäi líp lµ kh«ng ®æi: t 0 − t 1 t i − t i +1 t n −1 − t n q= = = δ1 δi δn λ1 λi λn §©y lµ hÖ n ph−¬ng tr×nh ®¹i sè tuyÕn tÝnh cña Èn sè ti vµ q. b»ng c¸ch khö c¸c Èn sè ti, ∀ i = 1 ÷ (n-1), sÏ t×m ®−îc: t0 − tn ∆t q= = , (W/m2). ∑ δi n Ri ∑λ i =1 i Thay q vµo lÇn l−ît mçi ph−¬ng tr×nh ta t×m ®−îc nhiÖt ®é c¸c mÆt tiÕp xóc: 1 ( t i −1 − t i ) x , ∀ i = 1 ÷ n. ti = ti-1 - δi Ph©n bè nhiÖt ®é trong mçi líp thø I lµ ®o¹n th¼ng cã d¹ng: 1 ( t i −1 − t i ) x , ∀ i = 1 ÷ n. ti(x) = ti-1 - δi 9.4.3. V¸ch mét líp, biªn lo¹i 3 9.4.3.1. Bµi to¸n Cho v¸ch ph¼ng réng v« h¹n, dµy δ, hÖ sè dÉn nhiÖt λ = const, mÆt x = 0 tiÕp xóc víi chÊt láng 1 cã nhiÖt ®é tf1 víi hÖ sè to¶ nhiÖt α1, mÆt x = δ tiÕp xóc víi chÊt láng 2 cã nhiÖt ®é tf2 víi hÖ sè to¶ nhiÖt α2, t×m ph©n bè nhiÖt ®é t(x) trong v¸ch. M« h×nh bµi to¸n cã d¹ng: 100
  2. ⎧ d2t ⎪ 2 =0 (1) ⎪ dx ⎪ ( t )⎨α 1 [t f 1 − t (0)] = −λ dt (0) (2) dx ⎪ dt (δ) ⎪α [t (δ) − t ] = −λ (3) ⎪2 f2 ⎩ dx 9.4.3.2. T×m ph©n bè t(x) NghiÖm tæng qu¸t cña (1) lµ: t(x) = C1x + C2. C¸c h»ng sè C1, C2 ®−îc x¸c ®Þnh theo (2) vµ (3): ⎧ α 1 ( t f 1 − C 2 ) = − λC 1 ⎨ ⎩α 2 (C1δ + C 2 − t f 2 ) = −λC1 Gi¶i hÖ nµy ta ®−îc: t f1 − t f 2 ⎧ ⎪C1 = λ λ +δ+ ⎪ α1 α2 ⎨ ⎪ λ ⎪ C 2 = t f1 + C1 α2 ⎩ Do ®ã ph©n bè t(x) cã d¹ng: ⎛ λ⎞ t f1 − t f 2 ⎜x + ⎟ t (x ) = t f 1 − ⎜ α1 ⎟ λ λ⎝ ⎠ +δ+ α1 α2 §å thÞ t(x) lµ ®o¹n th¼ng ®i qua 2 ®iÓm ⎛λ ⎞ ⎛ ⎞ λ R1⎜ − ⎜ α , t f 1 ⎟ vµ R 2 ⎜ δ + α , t f 2 ⎟ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 1 2 ®−îc gäi lµ c¸c ®iÓm ®Þnh h−íng cña §KB lo¹i 3. 9.4.3.3. TÝnh doang nhiÖt q Theo ®Þnh luËt Fourier ta cã: t f1 − t f 2 dt q = −λ = −λ C1 = , (W/m2), 1δ1 dx ++ α1 λ α 2 Theo biÓu thøc t(x) cã thÓ tÝnh nhiÖt ®é t¹i 2 mÆt v¸ch theo: t f1 − t f 2 ⎧ ⎪ t w1 = t (0) = t f 1 − αδ α ⎪ 1+ 1 + 1 λ α2 ⎪ ⎨ ⎪ t w 2 = t (δ) = t f 1 − t f 1 − t f 2 ⎛ δ + λ ⎞ ⎜ ⎟ λ⎜ α1 ⎟ λ ⎪ ⎝ ⎠ +δ+ ⎪ α1 α2 ⎩ 101
  3. 9.5. DÉn nhiÖt trong v¸ch trô 9.5.1. Trô mét líp, biªn lo¹i 1 Bµi to¸n: Cho v¸ch trô 1 líp ®ång chÊt, b¸n kÝnh trong r1, ngoµi r2, λ = const, hai mÆt biªn cã nhiÖt ®é t1, t2. T×m ph©n bè nhiÖt ®é t(r) trong trô vµ nhiÖt l−îng Q ql = , (W/m), truyÒn qua 1m dµi mÆt trô. Trong to¹ ®é trô, m« h×nh bµi to¸n trªn l cã d¹ng: ⎧ d 2 t 1 dt ⎪ 2+ =0 (1) r dr dr ⎪ ( t )⎨ t (r1 ) = t 1 (2) ⎪ t (r ) = t (3) ⎪2 2 ⎩ 9.5.1.2. T×m ph©n bè t(r) dt §æi biÕn u = th× ph−¬ng tr×nh vi ph©n dÉn nhiÖt (1) cã d¹ng: dr du u du dr + = 0 hay =− . dr r u r LÊy tÝch ph©n lÇn 1 ta cã: ln C1 C dt dt = u = 1 → dt = C1 . Lnu = - ln r + ln C1 = hay ln r dr r r LÊy tÝch ph©n lÇn 2 ta cã nghiÖm tæng qu¸t cña (1) lµ: t(r) = C1ln r + C2, C¸c h»ng sè C1, C2 ®−îc tÝnh theo §KB (2) vµ (3): t − t2 ⎧ C =− 1 t (r1 ) = t 1 = C1 ln r1 + C 2 ⎫ ⎪ 1 ⎪ r ⎬→⎨ ln 2 t (r2 ) = t 2 = C1 ln r2 + C 2 ⎭ ⎪ r1 ⎪C 2 = t 1 − C1 ln r1 ⎩ VËy ph©n bè nhiÖt ®é trong v¸ch trô cã d¹ng: t1 − t 2 r t (r ) = t 1 − ln r r1 ln 2 r1 §−êng cong t(r) cã d¹ng logarit ®i qua 2 ®iÓm (r1, t1) vµ (r2, t2). 9.5.1.3. TÝnh nhiÖt l−îng Dßng nhiÖt qua 1m2 mÆt trô b¸n kÝnh r bÊt kú lµ: λ( t 1 − t 2 ) , w/m2, C dt q = −λ = −λ 1 = r dr r r ln 2 r1 102
  4. lu«n gi¶m khi r t¨ng. L−îng nhiÖt qua 1m dµi mÆt trô b¸n kÝnh r bÊt kú lµ: (t − t ) Q q.2πrl ∆t , (w/m), ql = = = −2πλC1 = 1 2 = r 1 l l Rl ln 2 2πλ r1 Víi R l = 1 ln r2 , (mK/W) lµ nhiÖt trë cña 1m trô. V× ql = const víi mäi 2πλ r1 mÆt trô, kh«ng phô thuéc vµo b¸n kÝnh r nªn ql ®−îc coi lµ 1 ®¹i l−îng ®Æc tr−ng cho dÉn nhiÖt qua v¸ch trô. 9.5.2. Trô n líp biªn lo¹i 1 9.5.2.1. Bµi to¸n Cho v¸ch trô n líp, b¸n kÝnh trong r0, r1, . . . ri, . . . rn, cã hÖ sè dÉn nhiÖt λi, cã nhiÖt ®é 2 mÆt biªn kh«ng ®æi t0, tn. T×m l−îng nhiÖt ql , qua 1m dµi mÆt trô, nhiÖt ®é ti, ∀ i = 1 ÷ (n-1) c¸c mÆt tiÕp xóc vµ ph©n bè nhiÖt ®é ti(r) trong mçi líp. 9.5.2.2. Lêi gi¶i V× ql = const víi mäi líp nªn cã hÖ ph−¬ng tr×nh: ( t i −1 − t i ) ql = , ∀i = 1 ÷ n, n ri 1 ∑ 2πλ ln r i =1 i −1 i B»ng c¸ch khö (n-1) Èn ti, ∀ i = 1 ÷ (n-1) se thu ®−îc: (t 0 − t n ) ql = , , (W/m) n ri 1 ∑ 2πλ ln r i =1 i −1 i n trong ®ã: R l = ∑ 1 ln ri , , (mK/W) lµ tæng nhiÖt trë cña 1m v¸ch trô n líp. i =1 2 πλ i ri −1 TÝnh ti, ∀ i = 1 ÷ (n-1) lÇn l−ît theo ql ta ®−îc: r 1 t l = t l −1 − ln i , ∀i = 1 ÷ (n − 1), 2πλ i ri −1 Ph©n bè nhiÖt ®é trong mçi líp thø i cã d¹ng: t i − t i −1 r t l (r ) = t l − , ∀i = 1 ÷ (n − 1), ln ri ri −1 ln ri −1 103
  5. lµ ®−êng cong logarit ®I qua 2 ®iÓm (ri-1, ti-1) vµ (ri, ti). 9.5.3. V¸ch trô mét líp biªn lo¹i 3 9.5.3.1. Bµi to¸n T×m ph©n bè nhiÖt ®é t(r) trong v¸ch trô ®ång chÊt cã r1, r2, λ cho tr−íc, mÆt trong tiÕp xóc víi chÊt láng nãng cã tf1, α1, mÆt ngoµi tiÕp xóc víi chÊt láng l¹nh cã tf2, α2. Trong to¹ ®é trô, m« h×nh bµi to¸n cã d¹ng: ⎧ d 2 t 1 dt + =0 ⎪ (1) dr r dr ⎪ ( t )⎨ α 1 [t f 1 − t (r1 )] = −λt r (r1 ) (2) ⎪α [t (r ) − t ] = −λt (r ) (3) ⎪2 2 f2 r2 ⎩ 9.5.3.2. T×m ph©n bè t(r) NghiÖm tæng qu¸t cña (1) lµ: t(r) = C1x + C2. C¸c h»ng sè C1, C2 ®−îc x¸c ®Þnh theo c¸c §KB (2) vµ (3): ⎧ C1 ⎪ α 1 ( t f 1 − C1 ln r1 − C 2 ) = −λ r ⎪ ⎨ 1 C1 ⎪α 2 (C1 ln r2 + C 2 − t f 2 ) = −λ ⎪ ⎩ r2 Gi¶i ra ta ®−îc: t f 2 − t f1 C1 = ; vµ C2 = tf2 + C1; λ λ r2 + + ln α 1 r1 α 2 r2 r1 VËy: ⎛r λ⎞ t f1 − t f 2 ⎜ ln + ⎜ r α r ⎟. t (r ) = t f 1 − ⎟ λ λ r ⎝1 11⎠ + + ln 2 α 1 r1 α 2 r2 r1 ⎛ ⎞ λ §å thÞ t(r) cã d¹ng loarit tiÕp tuyÕn t¹i r1 qua ®iÓm R 1 ⎜ r1 − , t f 1 ⎟ vµ tiÕp ⎜ ⎟ α ⎝ ⎠ 1 ⎛ ⎞ λ tuyÕn t¹i r1 qua ®iÓm R 2 ⎜ r2 + ,tf2 ⎟ . ⎜ ⎟ α2 ⎝ ⎠ 9.5.3.3. TÝnh nhiÖt l−îng q1 L−îng nhiÖt qua 1m dµi mÆt trô kh«ng ®æi vµ b»ng: 104
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2