Giáo trình phân tích nguyên lý ứng dụng vào quy trình các phản ứng nhiệt hạch hạt nhân hydro p10
lượt xem 5
download
Tham khảo tài liệu 'giáo trình phân tích nguyên lý ứng dụng vào quy trình các phản ứng nhiệt hạch hạt nhân hydro p10', kỹ thuật - công nghệ, năng lượng phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình phân tích nguyên lý ứng dụng vào quy trình các phản ứng nhiệt hạch hạt nhân hydro p10
- Trong c¸c thiÕt bÞ gia nhiÖt Qm > 0 vµ ∆U > 0, cßn trong c¸c thiÕt bÞ lµm l¹nh Qm < 0 vµ ∆U < 0. NÕu tÝnh theo khèi l−îng riªng ρ ,(kg/m3) , vËn tèc v,m/s vµ tiÕt diÖn dßng ch¶y f,(m2) th× biÓu thøc cña l−u l−îng G (kg/s) sÏ cã d¹ng: G = ρωf. Ph−¬ng tr×nh CBN tæng qu¸t, liªn hÖ c¸c th«ng sè nªu trªn sÏ cã d¹ng: ∑ρIViCi(tiτ - t0) + τ[(ρ1ω1f1(i1”–i1’) + ρ2ω2f2(i2”–i2’) + ∑ki( t i –tf)Fi] = 0. Ph−¬ng tr×nh nµy cho phÐp t×m ®−îc 1 ®¹i l−îng ch−a biÕt nµo ®ã, vÝ dô thêi gian τ ®Ó khëi ®éng thiÕt bÞ, khi cã thÓ x¸c ®Þnh tÊt c¶ c¸c ®¹i l−îng cßn l¹i. * Ph−¬ng tr×nh c©n b»ng nhiÖt khi æn ®Þnh: Trªn thùc tª, ng−êi ta th−êng tÝnh nhiÖt cho TBT§N khi nã ®· lµm viÖc æn ®Þnh, víi ∆U = 0. VÒ lý thuyÕt , nÕu gi¶ thiÕt Qm = 0 th× ph−¬ng tr×nh CBN cã d¹ng: ∆I1 = ∆I2 , hay G1 (i1” – i1’) = G2 (i2” – i2’), (W). NÕu chÊt láng kh«ng chuyÓn pha th× ph−¬ng tr×nh CBN cã d¹ng: G1 Cp1(t1’ – t1”) = G2 Cp2 (t2” – t2’), (W). NÕu gäi GCp = ρωfCp =C lµ nhiÖt dung (hay ®−¬ng l−îng n−íc) cña dßng chÊt láng th× ph−¬ng tr×nh trªn cã d¹ng: C1(t1’ – t1”) = C2(t2” – t2’) hay C1δt1 = C2δt 2, (W), ë d¹ng vi ph©n, trªn mçi ph©n tè diÖn tÝch dF cña mÆt T§N, th× ph−¬ng tr×nh CBN cã d¹ng: - C1dt1 = C2dt 2, (W), NÕu chÊt láng lµ h¬I qu¸ nhiÖt cã Cp11 , t1’ vµo TBT§N, ®−îc lµm nguéi ®Õn nhiÖt ®é ng−ng tô ts, ng−ng tô hoµn toµn vµ to¶ ra l−îng nhiÖt r thµnh n−íc ng−ng cã nhiÖt dung riªng Cp12 råi gi¶m nhiÖt ®é ®Õn t2” > ts cã nhiÖt dung riªng Cp22 th× ph−¬ng tr×nh CBN cã d¹ng: G1 Cp1(t1’ – t1”) = G2 [Cp21 (ts – t2’) + r + Cp21 (t2” – ts) ], (W). §©y lµ ph−¬ng tr×nh CBN cho lß h¬i hay tuèc bin h¬i. 12.3.2.2. P h−¬ng tr×nh truyÒn nhiÖt: D¹ng vi ph©n: L−îng nhiÖt δQ truyÒn tõ chÊt láng nãng t1 ®Õn chÊt láng l¹nh t2 qua ph©n tè diÖn tÝch dFx cña mÆt v¸ch cã d¹ng: δQ = k (t1 - t2) dFx = k ∆txdFx , (W), k = f(α1, α2, λ, δ), (W/m2K), lµ hÖ sè truyÒn nhiÖt qua v¸ch , th−êng trong ®ã: ®−îc coi lµ kh«ng ®æi trªn toµn mÆt F, ∆tx = (t1 - t2) lµ ®é chªnh nhiÖt ®é 2 chÊt láng ë 2 bªn mÆt dFx phô thuéc vµo vÞ trÝ cña dFx , tøc lµ ∆tx = f(Fx). D¹ng tÝch ph©n: L−îng nhiÖt Q truyÒn qua diÖn tÝch F cña v¸ch cã thÓ tÝnh: F Q = ∫ k∆t x dFx = k ∫ ∆t x (Fx )dFx = kF∆t , (W), F 0
- F 1 F∫ víi: ∆t = ∆t x (Fx )dFx gäi lµ ®é chªnh trung b×nh trªn mÆt F cña nhiÖt ®é 2 chÊt 0 láng. 12.3.3. X¸c ®Þnh ®é chªnh trung b×nh ∆t 12.3.3.1. S¬ ®å song song ng−îc chiÒu Ph−¬ng tr×nh CBN vµ truyÒn nhiÖt qua dFx theo s¬ ®å song song ng−îc chiÒu trªn ®å thÞ (t-Fx) ë h×nh 12.3.3.1 cã d¹ng: ⎧δQ = −C1 dt 1 = −C 2 dt 2 ⎨ , ⎩ δQ = k∆t x dFx Tõ ®ã ta cã: ⎛1 1⎞ dt1 = dt1 = − ⎜ − ⎟.δQ , ⎜C ⎟ ⎝ 1 C2 ⎠ d∆tx =-mk∆txdFx, hay: ⎛1 1⎞ víi m = − ⎜ − ⎟ , (K/W). ⎜C C2 ⎟ ⎝1 ⎠ NÕu m vµ k kh«ng ®æi th×: ∆t x d∆t x F ∫ = −mk ∫ dFx , hay: ∆t x ∆t 0 0 d∆t x = −mkdFx hay ∆t x = ∆t 0 e − mkFx ln ∆t x Theo ®Þnh nghÜa ∆t ta cã: ∆t F ∆t 0 F 1 ∫ ∆t x dFx = 0 ∫ e − mkFx dFx = (e − mkFx − 1) ∆t x = − mkF F0 F0
- Thay quan hÖ ∆t F = ∆t 0 e − mkF vµo trªn ta ®−îc: ∆t 0 ⎛ ∆t F ⎞ ∆t F − ∆t 0 ⎜ ⎜ ∆t − 1⎟ = ∆t = , ⎟ ∆t 0 ⎝ 0 ∆t F ⎠ ln ln ∆t 0 ∆t F Víi ∆t 0 = t1’ – t2”; ∆t F = t1”- t2’ lµ ®é chªnh nhiÖt ®é t¹i hai ®Çu mÆt truyÒn nhiÖt. 12.3.3.1. S¬ ®å song song cïng chiÒu Tõ hÖ ph−¬ng tr×nh CBN ⎧δQ = −C1 dt 1 = −C 2 dt 2 ⎨ , ⎩ δQ = k∆t x dFx ⎛1 1⎞ biÕn ®æi nh− trªn, víi m = ⎜ ⎟, + ⎜ ⎟ ⎝ C1 C 2 ⎠ sÏ ®−îc: ∆t F − ∆t 0 ∆t = , ∆t F ln ∆t 0 Víi ∆t 0 = t1’ - t2’ ; ∆t F = t1”- t2” lµ ®é chªnh ∆tx t¹ Fx = 0 vµ Fx = F. 12.3.3.3. C¸c s¬ ®å kh¸c BiÓu thøc ∆t cña c¸c s¬ ®å kh¸c (song song ®æi chiÒu, giao nhau 1 hay n lÇn) ®−îc tÝnh theo s¬ ®å song song ng−îc chiÒu råi nh©n víi hÖ sè ε∆t cho tõng s¬ ®å bëi ®å thÞ: ε ∆t = f (P, R ); t −t δt 2 t 1 − t 1 δt 1 " ' ' " trong ®ã P = = vµ R = " = 2 2 ∆t max t 2 − t '2 δt 2 t −t ' ' 1 2 12.3.4. TÝnh nhiÖt ®é cña c¸c chÊt ra khái TBT§N Khi tÝnh kiÓm tra hoÆc tÝnh chän 1 TBT§N cã s½n, th−êng cho biÕt t1’, t2’, k, C1, C2 vµ cÇn tÝnh nhiÖt ®é t1”, t2” ra khái TBT§N ®Ó xem nhiÖt ®é cã phï hîp víi c«ng nghÖ hay kh«ng. PhÐp tÝnh nµy cã thÓ thùc hiÖn cho c¸c s¬ ®å song song kh«ng ®æi chiÒu nh− sau: 12.3.4.1. S¬ ®å song song ng−îc chiÒu T¹i Fx = F , ph−¬ng tr×nh ∆t x = ∆t 0 e − mkF sÏ cã d¹ng: x
- kF ⎛ C1 ⎞ ∆t F t 1 − t '2 C1 ⎜ 1− C 2 ⎟ " ⎜ ⎟ = e − mkFx hay = e − N (1− n ) , e⎝ ⎠ ∆t 0 t1 − t 2 ' " C kF víi N = vµ n = 1 lµ c¸c sè khong thø nguyªn. C2 C1 Sau khi trõ 2 vÕ cña ®¼ng thøc trªn cho 1 vµ khö mÉu sè ta ®−îc: (t2”- t2’) – (t1’ – t1”) = [( t1’ - t2’) - (t2”- t1”)] [e-N(1-n) - 1]. NÕu gäi δt1 = (t1’ – t1”), δt2 = (t2”- t2’), khi kÕt hîp ph−¬ng tr×nh trªn víi ph−¬ng tr×nh c©n b»ng nhiÖt ta cã hÖ sau: [ ][ ] ⎧δt 2 − δt 1 = ( t 1 − t "2 ) − δt 2 e − N (1− n ) − 1 ' ⎨ ⎩ C1 δt 1 = C 2 δt 2 §©y lµ hÖ 2 ph−¬ng tr×nh bËc 1 cña 2 Èn δt1 vµ δt2 , cã nghiÖm lµ: ⎧ 1 − e − N (1− n ) ⎪δt 1 = ( t 1 − t " ) = ( t 1 − t " ) Z(n, N) ' ' ⎨ 1 − ne − N (1− n ) 2 2 ⎪ δt 2 = ( t 1 − t 2 )nZ(n , N) ' " ⎩ NÕu gäi t1” = t1’ - δt1 , t2” = t2’ + δt2. Nhê ®ã t×m ®−îc: 12.3.4.2. S¬ ®å song song cïng chiÒu Víi c¸c ký hiÖu N, n, δt1 , δt2 vµ c¸ch chøng minh nh− trªn, sÏ thu ®−îc hÖ ph−¬ng tr×nh: [ ] ⎧δt 2 + δt 1 = ( t 1 − t " ) 1 − e − N (1+ n ) ' ⎨ 2 , C1 δt 1 = C 2 δt 2 ⎩ C¸c nhiÖt ®é ra tÝnh theo δt1 , δt2 sÏ cã d¹ng: 1 − e − N (1+ n ) t1 = t1 - δt1 = t1 – (t1 – t2 ) ” ’ ’ ’ ’ = t1’ – (t1’ – t2’)P(n,N) 1+ n t2” = t2’ + δt2 = t2’ + (t1’ – t2’)nP(n,N). Khi chÊt láng s«I, vÝ dô trong lß h¬I hoÆc thiÕt bÞ bèc h¬i th× t2’ = t2” = ts . C1 C2 = G2Cp2 = ∞ nªn n = = 0, do ®ã t1” = t1’ – (t1’ – ts)(1 – e-N). C2 12.3.4.3. So s¸nh c«ng suÊt nhiÖt cña s¬ ®å cïng chiÒu vµ ng−îc chiÒu Tû sè c¸c c«ng suÊt nhiÖt cña TBT§N theo s¬ ®å song song cïng chiÒu Qp = C1δt1p vµ khi ng−îc chiÒu Qz = C1δt1z sÏ cã d¹ng: [1 − e ][1 − ne ] < 1. − N (1+ n ) − N (1− n ) Qp = [ ] − N (1− n ) (1 − n ) 1 − e Qz Khi cã cïng chØ sè n vµ N, c«ng suÊt trao ®æi nhiÖt cña s¬ ®å song song ng−îc chiÒu lu«n lín h¬n c«ng suÊt nhiÖt cña s¬ ®å song song cïng chiÒu. ./.
- Chæång 2: NÀNG LÆÅÜNG MÀÛT TRÅÌI 2.1. Nàng læåüng bæïc xaû màût tråìi Trong toaìn bäü bæïc xaû cuía màût tråìi, bæïc xaû liãn quan træûc tiãúp âãún caïc phaín æïng haût nhán xaíy ra trong nhán màût tråìi khäng quaï 3%. Bæïc xaû γ ban âáöu khi âi qua 5.105km chiãöu daìy cuía låïp váût cháút màût tråìi, bë biãún âäøi ráút maûnh. Táút caí caïc daûng cuía bæïc xaû âiãûn tæì âãöu coï baín cháút soïng vaì chuïng khaïc nhau åí bæåïc soïng. Bæïc xaû γ laì soïng ngàõn nháút trong caïc soïng âoï (hçnh 2.1). Tæì tám màût tråìi âi ra do sæû va chaûm hoàûc taïn xaû maì nàng læåüng cuía chuïng giaím âi vaì báy giåì chuïng æïng våïi bæïc xaû coï bæåïc soïng daìi. Nhæ váûy bæïc xaû chuyãøn thaình bæïc xaû Rången coï bæåïc soïng daìi hån. Gáön âãún bãö màût màût tråìi nåi coï nhiãût âäü âuí tháúp âãø coï thãø täön taûi váût cháút trong traûng thaïi nguyãn tæí vaì caïc cå chãú khaïc bàõt âáöu xaíy ra. Âàûc træng cuía bæïc xaû màût tråìi truyãön trong khäng gian bãn ngoaìi màût tråìi laì mäüt phäø räüng trong âoï cæûc âaûi cuía cæåìng âäü bæïc xaû nàòm trong daíi 10-1 - 10 µm vaì háöu nhæ mäüt næía täøng nàng læåüng màût tråìi táûp trung trong khoaíng bæåïc soïng 0,38 - 0,78 µm âoï laì vuìng nhçn tháúy cuía phäø. ÂÄÜ DAÌI BÆÅÏC SOÏNG ( 10exp -8 10exp -4 10exp -2 10exp 0 10exp 2 10exp 4 10exp 8 10exp 10 10exp -6 10exp 6 Bæïc xaû nhiãût Tæí ngoaûi Radar, TV, Radio Tia Gamma 25 Tia Cosmic Gáön Tia X . xa Radio Radio Soïng ngàõn Soïng daìi Tia häöng ngoaûi AÏnh saïng trong tháúy 0.38 - 0.78 3 Nàng læåüng màût tråìi Hçnh 2.1 Daíi bæïc xaû âiãûn tæì Chuìm tia truyãön thàóng tæì màût tråìi goüi laì bæïc xaû træûc xaû. Täøng håüp caïc tia træûc xaû vaì taïn xaû goüi laì täøng xaû. Máût âäü doìng bæïc xaû træûc xaû åí ngoaìi låïp khê 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p1
7 p | 100 | 16
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p2
7 p | 71 | 9
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p4
6 p | 95 | 9
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p6
8 p | 79 | 9
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p5
6 p | 89 | 7
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p7
6 p | 72 | 7
-
Giáo trình phân tích nguyên lý ứng dụng vào quy trình cấu tạo liên kết tán đinh trong thép hình p3
5 p | 67 | 6
-
Giáo trình phân tích nguyên lý ứng dụng vào quy trình các phản ứng nhiệt hạch hạt nhân hydro p8
5 p | 91 | 6
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p9
6 p | 64 | 6
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p8
8 p | 83 | 6
-
Giáo trình phân tích nguyên lý ứng dụng vào quy trình các phản ứng nhiệt hạch hạt nhân hydro p9
5 p | 70 | 5
-
Giáo trình phân tích nguyên lý ứng dụng vào quy trình cấu tạo liên kết tán đinh trong thép hình p2
5 p | 64 | 5
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p3
7 p | 75 | 5
-
Giáo trình phân tích nguyên lý ứng dụng định vị công trình dẫn tim cốt trong lắp đặt ván khuôn p10
6 p | 75 | 4
-
Giáo trình phân tích nguyên lý ứng dụng vào quy trình cấu tạo liên kết tán đinh trong thép hình p4
5 p | 45 | 3
-
Giáo trình phân tích nguyên lý ứng dụng vào quy trình cấu tạo liên kết tán đinh trong thép hình p5
5 p | 58 | 3
-
Giáo trình phân tích nguyên lý ứng dụng vào quy trình cấu tạo liên kết tán đinh trong thép hình p6
5 p | 49 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn