Hàm bậc 3 và bậc 4, cách giải
lượt xem 37
download
Tài liệu hàm bậc 3 và bậc 4, cách giải học tập và luyện thi, nhằm giúp các bạn có cách nhìn toàn diện về kiến thức và kĩ năng cần nắm vững trước khi kỳ thi sắp tơi với tâm thế vững vàng nhất. Tác giả hi vọng tài liệu này sẽ là tài liệu bổ ích cho các em, tài liệu mang tính chất tham khảo
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Hàm bậc 3 và bậc 4, cách giải
- Gi¶i bµi kú tr−íc. Bµi 1.Gi¶i hÖ ph−¬ng tr×nh x 2 + xy − y 2 = 5 a) y x 5 2 x − 2 y = − 2 − xy 3x 2 − 8xy + 4 y 2 = 0 b) 5 x − 7 xy − 6 y = 0 2 2 Gi¶i x + xy − y = 5 2 2 a) y x 5 2 x − 2 y = − 2 − xy §iÒu kiÖn: x π 0; y π 0. ViÕt l¹i hÖ ®· cho d−íi d¹ng: x 2 + xy − y 2 = 5 5 −2 x + 2 xy + y = −2 2 2 §©y lµ hÖ ph−¬ng tr×nh ®¼ng cÊp bËc hai, gi¶i theo mét trong hai c¸ch ë d¹ng 4. x = 2 §¸p sè: y = 1 (tho¶ m·n ®iÒu kiÖn) x = −2 y = −1 3x 2 − 8xy + 4 y 2 = 0 b) 2 5 x − 7 xy − 6 y = 0 2 §©y lµ hÖ ph−¬ng tr×nh ®¼ng cÊp bËc hai. +) NÕu x=0 th× hÖ cã d¹ng: 4 y 2 = 0 ⇔ y=0 −6 y = 0 2 VËy (0,0) lµ mét nghiÖm cña hÖ ph−¬ng tr×nh. +) NÕu x π 0. §Æt y=kx, thay vµo hÖ ta cã: x 2 (3 − 8k + 4k 2 ) = 0 2 x (5 − 7k − 6k ) = 0 2 3 − 8k + 4k 2 = 0 1 ⇔ ⇔k = 5 − 7 k − 6k = 0 2 2 1 1 víi k = suy ra y = x , thay vµo hÖ ban ®Çu ta thÊy hÖ lu«n ®óng 2 2 1 VËy nghiÖm cña hÖ lµ (t , t ) ∀t ∈ R 2 Bµi 2. Gi¶i hÖ ph−¬ng tr×nh
- x3 = 2x + y a) y = 2y + x 3 x 2 − 2y2 = 2x + y b) 2 y − 2x = 2y + x 2 3 3 x + 4x = y + 2 c) y3 + 4 y = x + 3 2 C¸c hÖ trªn lµ hÖ ®èi xøng lo¹i II. x 3 = 2 x + y (1) a) 3 y = 2 y + x (2) Trõ hai ph−¬ng tr×nh cho nhau ta ®−îc: x3 -y3=2(x-y)+(y-x)=x-y ¤ (x-y)(x2+y2+xy-1)=0 x = 0 +) x=y thay vµo (1) ta cã: x3=2x+x=3x ¤ x = 3 x = − 3 +) x2+y2+xy-1=0, kÕt hîp víi ph−¬ng tr×nh (1)ta ®−îc: x 2 + y 2 + xy − 1 = 0 3 x = 2x + y y = x3 − 2 x ⇔ 2 x + ( x − 2 x ) + x.( x − 2 x ) − 1 = 0 3 2 3 y = x3 − 2 x ⇔ 6 x − 3x + 3x − 1 = 0 4 2 y = x3 − 2 x ⇔ 2 ( x − 1) = 0 3 y = x3 − 2 x x = ±1 ⇔ 2 ⇔ x = 1 y = ∓1 VËy nghiÖm cña hÖ ph−¬ng tr×nh lµ : (0,0);(1, −1);( −1,1),( 3, 3);( − 3 − 3) x 2 − 2y2 = 2x + y b) 2 y − 2x = 2y + x 2 §¸p sè: (0,0); (-3,-3) 3 3 x + 4x = y + 2 c) y3 + 4 y = x + 3 2 ¸p dông c¸ch gi¶i nh− trªn, trõ hai ph−¬ng tr×nh cho nhau ta ®−îc hÖ ph−¬ng tr×nh t−¬ng ®−¬ng
- 3 3 y = x x + 4x = y + 2 ⇔ 3 3 (1) ( x − y )( x 2 + y 2 + xy + 5) = 0 x + 3x = 2 Gi¶i ph−¬ng tr×nh (1): §Æt x= 2t th× (1) cã d¹ng: 3 4t 3 + 3t = 4 1 1 ⇔ 4t 3 + 3t = (2 − ) 2 2 1 1 ⇔ t = (3 2 − 3 ) 2 2 VËy hÖ cã nghiÖm duy nhÊt: 1 x = 2 − 3 2 3 y = 3 2 − 1 3 2 Chó ý: NÕu ph−¬ng tr×nh bËc ba cã d¹ng: 1 3 1 4 x 3 + 3x = (a − 3 ) 2 a 1 1 th× ph−¬ng tr×nh cã nghiÖm duy nhÊt lµ x = (a − ) 2 a Bµi 3. a) X¸c ®Þnh a ®Ó c¸c ph−¬ng tr×nh sau cã nghiÖm chung x 3 + a( x + 2)2 + x 2 = 0 vµ x3 + 4 x 2 + (3 − a) x − 2 a = 0 b)X¸c ®Þnh m ®Ó hai ph−¬ng tr×nh sau cã nghiÖm chung: x2+mx+1=0 vµ x2+x+m=0 c) Chøng minh r»ng nÕu hai ph−¬ng tr×nh x2+ax+b=0 vµ x2+cx+d=0 cã nghiÖm chung th×: (b-d)2+(a-c)(ad-bc)=0 d)X¸c ®Þnh m ®Ó hai ph−¬ng tr×nh sau cã nghiÖm chung x(x-1)=m+1 vµ x4+(x+1)2=m2 Gi¶i x + a( x + 2) + x = 0 (1) 3 2 2 a) vµ x3 + 4 x 2 + (3 − a) x − 2a = 0 (2) NÕu a=0 th× c¸c ph−¬ng tr×nh 91) vµ (2) cã nghiÖm chung lµ x=0. VËy a=0 lµ mét gi¸ trÞ cÇn t×m. XÐt a π 0. V× x=-2 kh«ng lµ nghiÖm cña (1) vµ (2) nªn x3 + x2 x (3 x + 4) (1) ⇔ a = − ⇔a= −x ( x + 2) 2 ( x + 2)2 x 3 + 4 x 2 + 3x x (2) ⇔ ⇔ a = x ( x + 2) − x+2 x+2
- x §Æt = y (3) x+2 khi ®ã (2) cã d¹ng x(x+2)=y+a (1) cã d¹ng y(y+2)=x+a VËy ®iÒu kiÖn ®Ó c¸c ph−¬ng tr×nh cã nghiÖm chung lµ hÖ: x ( x + 2) = y + a (4) y( y + 2) = x + a ph¶i cã nghiÖm x 2 + 2x = y + a (4) ⇔ 2 y + 2y = x + a ®©y lµ hÖ ph−¬ng tr×nh ®¼ng cÊp bËc hai Trõ hai ph−¬ng tr×nh cho nhau ta ®−îc hÖ t−¬ng ®−¬ng: y = x 2 x2 + 2 = y + a x + x − a = 0 ⇔ y = −3 − x ( x − y )( x + y + +3) = 0 x 2 + 3x + 3 − a = 0 KÕt hîp víi (3) ta ®−îc c¸c ph−¬ng tr×nh (1) vµ (2) cã nghiÖm chung khi vµ chØ khi mét trong hai hÖ sau ph¶i cã nghiÖm: y = x 2 x = 0; a = 0 lo¹i x + x − a = 0 ⇔ x x=-1;a=0 lo¹i =y x + 2 y = −3 − x 2 x1,2 = −3 ∓ 3 x + 3x + 3 − a = 0 ⇔ x a = 6 ∓ 3 3 =y x + 2 kÕt luËn: víi a = 0; a = 6 ∓ 3 3 th× c¸c ph−¬ng tr×nh (1) vµ (2) cã nghiÖm chung. b)X¸c ®Þnh m ®Ó hai ph−¬ng tr×nh sau cã nghiÖm chung: x2+mx+1=0 vµ x2+x+m=0 Xem c¸ch gi¶i ë vÝ dô 1, d¹ng 1. §¸p sè: m=-2. c) Chøng minh r»ng nÕu hai ph−¬ng tr×nh x2+ax+b=0 vµ x2+cx+d=0 cã nghiÖm chung th×: (b-d)2+(a-c)(ad-bc)=0 ®Æt x2=y, y ≥ 0, khi ®ã ta cÇn hÖ sau cã nghiÖm ( víi y ≥ 0) y + ax + b = 0 y + cx + d = 0 D= c−a Dy = ad − bc Dx = b − d +)NÕu D=0 ¤ a=c, khi ®ã hÖ muèn cã nghiÖm th× b=d,do ®ã ®¼ng thøc cÇn chøng minh lµ hiÓn nhiªn.
- +)NÕu D π 0, ta cã ad − bc y = c−a x = b−d c−a ad − bc b−d 2 Tõ ®iÒu kiÖn y=x2 ta cã: =( ) ⇔ (b − d )2 + ( a − c)( ad − bc) = 0 c−a c−a d)X¸c ®Þnh m ®Ó hai ph−¬ng tr×nh sau cã nghiÖm chung x(x-1)=m+1 (1)vµ x4+(x+1)2=m2 (2) §Æt x2=u, x+1=v fi u=(v-1)2 (3) Khi ®ã Tõ (1) vµ (2) cã: u-v=m; u2+v2=m2 XÐt hÖ ®èi xøng lo¹i 1 u − v = m u − v = m 2 ⇔ u + v = m (u + v ) + (u − v ) = 2 m 2 2 2 2 2 u − v = m u − v = m ⇔ 2 ⇔ m + (u + v ) = 2 m u + v = ± m 2 2 u + v = m u = m 1) ⇔ u − v = m v = 0 ThÕ vµo (3) ta ®−îc m=(0-1)2=1 Víi m=1 th× hai ph−¬ng tr×nh cã nghiÖm chung lµ x=-1. u + v = − m 2) t−¬ng tù ta ®−îc m=-1 u − v = m Víi m=-1 ta ®−îc x=0 lµ nghiÖm chung cña (1) vµ (2). KÕt luËn: Hai ph−¬ng tr×nh cã nghiÖm chung khi vµ chØ khi m=±1 Bµi 4. Gi¶i c¸c hÖ ph−¬ng tr×nh x + y + z = 1 a) 2 x + 2 y − 2 xy + z = 1 2 x + y + xy = a 2 + 2 a b) 4 4 (víi a ≥ 0) x + y = 2a 4 x + y + z = a c) x 2 + y 2 + z 2 = a 2 x 3 + y 3 + z 3 = a3 x + y + z = 1 a) 2 x + 2 y − 2 xy + z = 1 2 Coi z nh− tham sè, ta ®−îc hÖ ®èi xøng lo¹i I ®èi víi x vµ y x + y = 1 − z x + y = 1 − z 2 ⇔ 1− z 1 − z2 1 − 2z + z2 x + y − xy = xy = 1 − z − = 2 2 2 §iÒu kiÖn ®Ó cã nghiÖm x,y lµ
- 1 − 2z + z2 (1 − z )2 − 4 ≥0 2 ⇔ −(1 − z)2 ≥ 0 ⇔ z = 1 VËy nÕu z π 1 th× hÖ v« nghiÖm Víi z=1 thay vµo hÖ ta cã x=y=0 VËy hÖ chØ cã nghiÖm x=0, y=0,z=1. b) x + y + xy = a 2 + 2 a 4 (víi a ≥ 0) x + y = 2a 4 4 NhËn xÐt : NÕu x, y lµ nghiÖm cña hÖ th× x4 +y4 ≥ 2x2y2 hay 2a4 ≥ 2x2y2 fi xy £ a2 Do (x+y)2 £ 2(x2+y2) nªn (x+y)4 £ [2(x2+y2)]2 £ 4.2(x4+y4)=16a4 x + y ≤ 2a Khi ®ã ta cã: xy ≤ a 2 VËy khi a ≥ 0 th× x+y+xy £ a2+2a, kÕt hîp víi ph−¬ng tr×nh ®Çu tiªn cña hÖ ta ®−îc hÖ cã nghiÖm duy nhÊt x=y=a x + y + z = a c) x 2 + y 2 + z 2 = a 2 x 3 + y 3 + z 3 = a3 §Æt xy+yz+zx=b xyz=c x 2 + y 2 + z 2 = a 2 − 2b ⇒ b = 0 Ta cã ®¼ng thøc x 3 + y 3 + z 3 = a( a 2 − 3b) + 3c ⇒ c = 0 Do ®ã x + y + z = a (1) ⇔ xy + yz + zx = 0 xyz = 0 tõ ®ã hÖ cã c¸c nghiÖm lµ (a,0,0), (0,a,0), (0,0,a). Bµi 6 Ph−¬ng tr×nh bËc ba vµ Ph−¬ng tr×nh bËc bèn I. Ph−¬ng tr×nh bËc ba Trong phÇn nµy sÏ nªu ph−¬ng ph¸p gi¶i ph−¬ng tr×nh bËc ba tæng qu¸t. ax3 +bx2+cx+d=0 (1) D¹ng1. Gi¶i ph−¬ng tr×nh khi biÕt mét nghiÖm x=x0. Theo gi¶ thiÕt x=x0 lµ mét nghiÖm nªn ax03+bx02+cx0+d=0 (1) ¤ ax3+bx2+cx+d= ax03+bx02+cx0+d ¤ a(x3-x03)+b(x2-x02)+c(x-x0)=0 ¤ (x-x0)[ax2+(ax0+b)x+ax02+bx0+c]=0 1)NÕu D =(ax0+b)2-4a(ax02+bx0+c)
- x = x0 x = −( ax0 + b) ± ∆ 2a *NhËn xÐt: 1)NÕu biÕt tr−íc x0 lµ mét nghiÖm cña ph−¬ng tr×nh (1) th× ®iÒu kiÖn cÇn vµ ®ñ ®Ó ph−¬ng tr×nh (1) cã ba nghiÖm ph©n biÖt lµ: ax0 2 + ( ax0 + b) x0 + ax0 2 + bx0 + c ≠ 0 2 ∆ = ( ax0 + b) − 4a ( ax0 + bx0 + c ) > 0 2 2) NÕu x0 lµ mét nghiÖm cña ph−¬ng tr×nh (1) th× cã thÓ ph©n tÝch ax3+bx2+cx+d=(x-x0).f(x) (2) Trong ®ã f(x) lµ mét tam thøc bËc hai 3) NÕu x1;x2;x3 lµ c¸c nghiÖm cña ph−¬ng tr×nh (1) th× ta cã ph©n tÝch ax3+bx2+cx+d=a(x-x1)(x-x2)(x-x3), tõ ®ã ta cã c«ng thøc Viet cho ph−¬ng tr×nh bËc ba: b x1 + x2 + x3 = − a c x1 x2 + x2 x3 + x3 x1 = a d x1 x2 x3 = a D¹ng 2.Ph−¬ng tr×nh håi quy bËc ba §ã lµ ph−¬ng tr×nh ax3+bx2+cx+d (3) víi ac3=bd3 (a ,d π 0) (4) Tõ (4) suy ra d 1) NÕu c=0 fi b=0 , khi ®ã ph−¬ng tr×nh (3) trë thµnh ax3+d=0¤ x = 3 − a d c 2) NÕu c π 0fi b π 0 vµ = ( )3 a b c §Æt = − x0 th× c=-bx0, d=-ax03 b Thay vµo ph−¬ng tr×nh (3) ta ®−îc ax3+bx2-bx0x-ax03=0 ¤ a(x3-x03)+bx(x-x0)=0 ¤ (x-x0)[ax2+(ax0+b)x+ax02]=0 c VËy x = x0 = lµ mét nghiÖm b NÕu D =(ax0+b)2-4a2x02 ≥ 0 th× ph−¬ng tr×nh cßn cã nghiÖm −( ax0 + b) ± ∆ x= 2a NhËn xÐt:NÕu ph−¬ng tr×nh bËc ba lµ håi quy th× nã lu«n cã mét nghiÖm lµ c x0 = b D¹ng 3. Ph−¬ng tr×nh cã d¹ng 4 x 3 − 3x = m víi m ≤ 1
- §Æt m= cosa =cos(a ±2p ) α α α Khi ®ã cos α = cos(3 ) = 4 cos3 − 3cos 3 3 3 Do ®ã ph−¬ng tr×nh cã ba nghiÖm lµ α α ± 2π x1 = cos ; x 2,3 = cos 3 3 D¹ng 4. Ph−¬ng tr×nh d¹ng 4 x 3 − 3x = m víi m > 1 Tr−íc hÕt dÔ thÊy r»ng ph−¬ng tr×nh 1 3 1 4 x 3 − 3x = (a + 3 )(*) ( a ≠ 0) 2 a 1 1 lu«n cã nghiÖm lµ x = (a + ) 2 a MÆt kh¸c ph−¬ng tr×nh 4 x − 3x = m víi m > 1 chØ cã mét nghiÖm duy nhÊt 3 ThË vËy, ph−¬ng tr×nh kh«ng cã nghiÖm trong [-1,1] v× nÕu tr¸i l¹i x=x0 Œ [-1,1] lµ nghiÖm th× ®Æt x= cos a . Khi ®ã 4 x 3 − 3x = cos3α ≤ 1 ≠ m (v× m > 1) Gi¶ sö ph−¬ng tr×nh cã nghiÖm x=x1 víi x1 > 1 Khi ®ã 4x13-3x1=m. VËy ta cã ph−¬ng tr×nh: 4x3-3x=4x13-3x1 ¤ 4(x3-x13)-3(x-x1)=0 ¤ (x-x1)[4x2+4x1x+4x12-3]=0 Cã D' =4x12-4(4x12-3)=12-12x12< 0 do x1 > 1 VËy ph−¬ng tr×nh cã nghiÖm duy nhÊt x=x1 ( chó ý r»ng mét ph−¬ng tr×nh bËc ba lu«n cã Ýt nhÊt mét nghiÖm. 1 1 §Æt m = (a3 + ) víi a3 = m ± m 2 − 1 2 a3 Khi ®ã theo (*) nghiÖm duy nhÊt x1 cña ph−¬ng tr×nh lµ: 1 1 1 x= (a + ) = ( 3 m + m 2 − 1 + 3 m − m 2 − 1 ) 2 a 2 D¹ng 5: Ph−¬ng tr×nh d¹ng: 4x3+3x=m NhËn xÐt r»ng nÕu x=x0 lµ nghiÖm cña ph−¬ng tr×nh th× nghiÖm ®ã lµ duy nhÊt. ThËy vËy, xÐt x>x0, khi ®ã 4x3+3x>4x03+3x0=m nªn x kh«ng lµ nghiÖm T−¬ng tù víi x
- 1 1 1 x= (a − ) = ( 3 m + m 2 + 1 + 3 m − m 2 + 1 ) 2 a 2 D¹ng 6: D¹ng tæng qu¸t at3+bt2+ct+d=0 B»ng c¸ch chia c¶ hai vÕ cho a, ta cã thÓ coi a=1. ViÕt l¹i ph−¬ng tr×nh d−íi d¹ng t3+at2+bt+c=0 a 1) §Æt t = y − , khi ®ã cã thÓ viÕt ph−¬ng tr×nh d−íi d¹ng: 3 a a a ( y − )3 + a( y − ) 2 + b ( y − ) + c = 0 3 3 3 ⇔ y − py = q 3 a2 2a3 ab trong ®ã p= − b; q = − + −c 3 27 3 NÕu p=0 th× ph−¬ng tr×nh cã nghiÖm duy nhÊt: x = 3 q p NÕu p>0.§Æt y = 2 x . 3 3 3q Khi ®ã ph−¬ng tr×nh sÏ cã d¹ng :4x3-3x=m víi m = ®ã lµ ph−¬ng tr×nh d¹ng 4. 2p p −p NÕu p
- x3 = 2 y − 2 a) y = 2x − 2 3 x3 = 3 y − 3 b) 3 y = 3x − 3 x + y + z = 0 c) xy + yz + zx = − 3 4 1 xyz = 8 Bµi 5. Gi¶i c¸c ph−¬ng tr×nh 1 a) 4x 3 -3x= 2 1 b) 4 x 3 + 3x = 4 c)x4=4x+1
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ĐỀ CƯƠNG ÔN TẬP HỌC KÌ I MÔN TOÁN 10 CƠ BẢN
5 p | 317 | 62
-
Giáo án tuần 19 bài Tập đọc: Chuyện bốn mùa - Tiếng việt 2 - GV. Hoàng Quân
7 p | 897 | 46
-
Bài giảng Muốn làm thằng Cuội - Ngữ văn 8
26 p | 466 | 22
-
Giáo án Giải tích 12 chương 1 bài 5: Khảo sát sự biến thiên và vẽ đồ thị hàm số
31 p | 251 | 21
-
HÀM SỐ VÀ ĐỒ THỊ
4 p | 309 | 20
-
Giáo án Đại Số lớp 10: BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
5 p | 177 | 19
-
Hướng dẫn giải bài 1,2,3 trang 30,31 Đại số 9 tập 2
4 p | 105 | 2
-
Hướng dẫn giải bài 1,2,3,4 trang 38,39 SGK Đại số lớp 10
5 p | 102 | 1
-
Hướng dẫn giải bài 1,2,3,4,5,6,7 trang 44,45,46 SGK Toán 9 tập 1
8 p | 140 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn