intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Improving of control overhead crane quality based on the fuzzy adaptive

Chia sẻ: Thi Thi | Ngày: | Loại File: PDF | Số trang:8

19
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

This paper proposes a fuzzy adaptive second order sliding mode controller for 2D overhead crane model to improve the quality of position tracking, anti-swing in case existence of external disturbances. The sliding surface parameters are adjusted by a fuzzy logic system to change the sliding surface in order to track faster and make the payload oscillation smaller. The simulation results show that the system quality is improved and the applicability of the proposed controller in industrial practice.

Chủ đề:
Lưu

Nội dung Text: Improving of control overhead crane quality based on the fuzzy adaptive

Kỹ thuật điều khiển & Điện tử<br /> <br /> IMPROVING OF CONTROL OVERHEAD CRANE QUALITY<br /> BASED ON THE FUZZY ADAPTIVE SECOND ORDER SLIDING<br /> MODE CONTROL<br /> Le Xuan Hai, Quach Thai Quyen, Le Van Hung, Nguyen Van Thai,<br /> Vu Thi Thuy Nga*, Phan Xuan Minh<br /> Abstract: This paper proposes a fuzzy adaptive second order sliding mode<br /> controller for 2D overhead crane model to improve the quality of position<br /> tracking, anti-swing in case existence of external disturbances. The sliding<br /> surface parameters are adjusted by a fuzzy logic system to change the sliding<br /> surface in order to track faster and make the payload oscillation smaller. The<br /> simulation results show that the system quality is improved and the applicability<br /> of the proposed controller in industrial practice.<br /> Keywords: SOSMC, FASODMC, MIMO, HOSMC.<br /> <br /> 1. INTRODUCTION<br /> Crane is widely used to transport heavy load and hazardous materials in<br /> shipyards, factories and many kinds of industry. Therefore, researching on<br /> improving the control overhead crane quality is always implemented and<br /> developed by many researchers. Due to effect of the environment with unknown<br /> disturbances, sliding mode control on crane has been extremely attractive in recent<br /> years. High order control system are highly recommended and improved to<br /> increase the quality of controlling overhead crane system [1,4]. To solve the root<br /> problems for improving overhead crane system quality, both classic control and<br /> intelligent control are combined which is considered and researched [2,3,5].<br /> In this paper, a fuzzy adaptive second order sliding mode control is proposed to<br /> solve effectively the problem for overhead crane system. This control structure<br /> contains two sliding mode controller which have a parallel connection into a<br /> second order surface to control position and reduce sway angle of load at the same<br /> time. In order to adjust the parameters of sliding surface, a fuzzy logic system is<br /> used with inference rules are chosen by experience expert to help the system has<br /> suitable parameters to guarantee tracking trajectory faster and anti-sway angle of<br /> load under disturbance effect.<br /> This paper is divided into five parts: Introduction, Overhead Crane Dynamic<br /> model, Second Order Sliding Surface Construction, Sliding Surface Parameter<br /> Adjustment, Simulation and Results.<br /> 2. CONTENTS<br /> 2.1. Overhead crane dynamic model<br /> Overhead crane model is shown in figure 1 that includes: trolley and load.<br /> Where: mc , ml , l , u is the weight of trolley, the weight of load, the length of<br /> cable and impact force, respectively. Crane and load are considered like moving on<br /> Oxy plane.<br /> <br /> <br /> 20 L. X. Hai, … , P. X. Minh, “Improving of control overhead… sliding mode control.”<br /> Nghiên cứu khoa học công nghệ<br /> <br /> <br /> <br /> <br /> Fig 1. Overhead crane model.<br /> The dynamic equations are constructed based on Lagrange type II [6] :<br /> d  T  T <br />    Qi*  (1)<br /> dt  qi  qi qi<br /> Where: Qi* is generalized force, T is kinetic energy,  is potential energy, qi<br /> is generalized coordinate.<br /> The kinetic and potential energies of the crane system are presented in the<br /> following equation:<br /> 1 1<br /> T   mc  ml  x 2  ml l 2 2  ml lx cos  (2)<br /> 2 2<br />   mgl cos <br /> T<br />   mc  ml  ml l cos <br /> x<br /> d  T <br />      mc  ml   x  ml l cos   ml l 2 sin <br /> dt  x <br />  T<br />  0;  0; Qx*  u<br /> x x<br /> x  ml l cos   ml l 2 sin   u<br />  (mc  ml )  (3)<br /> T<br />   ml l 2  ml lx cos <br /> <br /> d  T  2  <br />    ml l   ml lx cos   ml x sin <br /> dt   <br />  T<br />  ml gl sin  ;   ml lx sin  ; Q *  0<br />  <br /> <br />  l  <br /> x cos    g sin  (4)<br /> From equation (3) and (4), dynamic model of overhead crane is obtained as<br /> followed:<br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số 45, 10 - 2016 21<br /> Kỹ thuật điều khiển & Điện tử<br /> <br /> x  ml l cos   ml l 2 sin   u<br />  mc  ml  <br />   (5)<br />  l  <br /> x cos    g sin <br /> 2.2. Second order surface construction<br /> x4    x x    . The<br /> T T<br /> Defining the state variable: X   x1 x2 x3<br /> parts of sate variable are position, velocity of trolley, sway angle and velocity of<br /> sway angle of load, respectively. The equation (3) can be rewriten as the the state<br /> space model belows:<br /> x1  x2<br /> x2  f1 ( X )  g1 ( X )u<br /> (6)<br /> x3  x4<br /> x4  f 2 ( X )  g 2 ( X )u<br /> Where :<br /> ml l sin   ml g sin  cos  1<br /> f1 ( X )  g1 ( X ) <br /> mc  ml sin 2  mc  ml sin 2 <br /> (7)<br /> m l 2 sin  cos   (mc  ml ) g sin  cos <br /> f2 ( X )   l g2 ( X )  <br />  mc  ml sin 2   l  mc  ml sin 2   l<br />  x  x   x  xd   x  xd <br /> Error e(t ) is defined as follows : e(t )   1 d     <br />  x3   d     d    <br /> Where: xd and  d are the desired position and the sway angle of load, in this<br /> case  d  0 . The state space model with error ex  e1 , e  e3 as belows:<br /> e1  e2<br /> e2  f1 ( X )  g1 ( X )u  <br /> xd<br /> (8)<br /> e3  e4<br /> e4  f 2 ( X )  g 2 ( X )u<br /> The purpose of overhead crane control system is to move the load from initial<br /> position to desired position without sway. Hence, using two sliding surfaces is to<br /> separate the system as follows :<br /> s1  c1e1  e2<br /> (9)<br /> s2  c2 e3  e4<br /> Therefore, the second order surface is defined as :<br /> s   s1   s2 (10)<br /> With c1 , c2 ,  and  are the positive constants. Apply the index accessibility<br /> rule s   k1 sgn( s )  k2 s   s1   s2 , the control law is inferred :<br /> <br /> <br /> 22 L. X. Hai, … , P. X. Minh, “Improving of control overhead… sliding mode control.”<br /> Nghiên cứu khoa học công nghệ<br /> <br />  f1 ( X )   f 2 ( X )   c1e2   c2 e4   xd  k1 sgn( s )  k2 s<br /> u (11)<br />  g1 ( X )   g 2 ( X )<br /> However, ovehead crane system appears a highly frequent oscillation in the<br /> control law because of the sgn(s) function . To cut down the oscillation, this paper<br /> uses the saturation function sat(s) instead of using the sgn(s) function in the<br /> equation (9). The sat ( s ) function is defined as :<br /> sgn( s ), s  1<br /> sat ( s )   (12)<br />  s , s 1<br /> Therefore, u is now as :<br />  f1 ( X )   f 2 ( X )   c1e2   c2 e4   xd  k1sat ( s )  k2 s<br /> u (13)<br />  g1 ( X )   g 2 ( X )<br /> 2.3. Second order surface construction<br /> In the previous researches, the parameters  ,  of the second order sliding<br /> surface are chosen to be positive. However, in this paper, the relationship of  and<br />  is displayed by a coefficient k1 as follows:   k1 where k1  0.6<br /> Since then, the signal control u is rewriten as :<br />  f ( X )   f 2 ( X )   c1e2  k1 c2 e4   xd  k1sat ( s )  k2 s<br /> u 1 (14)<br />  g1 ( X )  k1 g 2 ( X )<br /> Accordingly, the second order sliding surface in (10) depend on the value  .<br /> To select a suitable sliding surface, we recommend a fuzzy logic system to appoint<br /> the coefficient  of this surface. The information got from the error position e1 and<br /> the first derivative positon e1 is used to adjust  . The sets of input fuzzy which<br /> are chosen to fuzzise are A (the error position e1 ) and B (the derivation e1 ).<br /> The generalized fuzzy system is built according to the linear method [7] which<br /> includes 3 fuzzy sets for each of input variables: -1 0 1 and 5 fuzzy sets for output<br /> variables: -2 1 0 1 2. Defined, i is the set for A variable, j is the set for the B<br /> variable, k is the set for output variable, so the generalized linear rule always be<br /> satisfied: i  j  k  0 .<br /> The rule is defined in the table belows:<br /> <br /> <br /> <br /> <br /> The structure of control second order generalized sliding system is shown in fig 2.<br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số 45, 10 - 2016 23<br /> Kỹ thuật điều khiển & Điện tử<br /> <br /> <br /> <br /> <br /> Fig 2. The control structure.<br /> 3. SIMULATION RESULT<br /> To verify the effectiveness of this proposed method. Fuzzy adaptive second<br /> order sliding mode control (FASOSMC) is used for overhead crane system with the<br /> following parameters: mc  6(kg ) , ml  3(kg ) , g  9.8(m / s 2 ) , L  1(m) . The<br /> desired position is xd  3(m) and the selected parameters of FASOSMC are:<br /> k  3.5 , k1  0.6 , c1  2 , c2  0.01 ,   3.85 .<br /> The simulation is aim to give some estimations :<br />  The effectiveness of FASOSMC compared to SOSMC<br />  The ablility in against disturbance of FASOSMC<br /> Simulation 1 : Compare the quality of FASOSMC to SOSMC<br /> <br /> <br /> <br /> <br /> Figure 3a. The position of trolley. Figure 3b. The velocity of trolley.<br /> <br /> <br /> <br /> <br /> Figure 3c. The angle of load . Figure 3d. The angle velocity of load.<br /> <br /> <br /> 24 L. X. Hai, … , P. X. Minh, “Improving of control overhead… sliding mode control.”<br /> Nghiên cứu khoa học công nghệ<br /> <br /> The results are shown in figure 3. Inside, figure 3a shows the position of trolley<br /> when using two above controllers. Similarly, figure 3b, 3c, 3d show the velocity of<br /> trolley, the sway angle of load, the sway angle velocity of load, respectively.<br /> Table 1. The quality comparison.<br /> Settling time Overshoot Maximum angle of load<br /> Controller<br /> (s) (%) (rad)<br /> SOSMC 5 6.7 0.9<br /> FASOSMC 2.5 0 0.4<br /> <br /> The simulation results show that the quality of controlling system which using<br /> FASOSMC is better than using SOSMC, trolley tracks the desired trajectory faster<br /> and the sway angle of load is smaller.<br /> Simulation 2: Overhead crane with FASOSMC under disturbance affect<br /> The parameters of both the crane system and the controlling system are kept<br /> unchanged. However, the disturbance is added from 2(s) to 2.1(s) and the<br /> amplitude is 120. Here are the results of both with and without disturbance of<br /> FASOSMC in figure 4 below:<br /> <br /> <br /> <br /> <br /> Figure 4a. The position of trolley. Figure 4b. The velocity of trolley.<br /> <br /> <br /> <br /> <br /> Figure 4c. The sway angle of load. Figure 4d. The angle velocity of load.<br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số 45, 10 - 2016 25<br /> Kỹ thuật điều khiển & Điện tử<br /> <br /> Table 2. The quality of overhead crane system under disturbance effect.<br /> Settling Overshoot Maximum sway angle of load<br /> FASOSMC<br /> time (s) (%) (rad)<br /> With disturbance 2.5 0 0.4<br /> Without disturbance 5 5 0.4<br /> <br /> The system reaches the setting point right after 6s in the case with and without<br /> disturbance. Hence, using FASOSMC for overhead crane system is better to reduce<br /> disturbance.<br /> <br /> <br /> 4. CONCLUSIONS<br /> The simulation results show that FASOSMC as mentioned improves the quality<br /> of the overhead crane control system. With the simple control structure, FASOSMC<br /> is easy to be installed in digital technology.<br /> Acknowledgement: This research is funded by the Hanoi University of Science and<br /> Technology (HUST) under project number T2016-PC- 107.<br /> <br /> <br /> <br /> REFERENCES<br /> [1]. Chiou, J.S, Lium M.T, “Numerical Simulation for Fuzzy-PID Controller and<br /> Helping EP Reproduction with PSO hybrid algorithm”, Simulation Modeling<br /> Practice and Theory 17,1555-1565 (2009).<br /> [2]. Liu, D., J., Zhao, D., Wang, “Adaptive Sliding Mode Fuzzy Control for Two<br /> Dimensional Overhead Crane”, Mechatronics 15, 505-522 (2005).<br /> [3]. Shu, K., -K, Jen, C., -L, Shang, L., -J, “Design of Sliding Mode Controller for<br /> Anti-swing Control of Overhead Cranes”, IECON Annual Conference of<br /> IEEE Industrial Electronics Society, pp. 147-152 (2005).<br /> [4]. Wang, J., Li, H., Karray, F., Basir, O., “Real World Implementation of Fuzzy<br /> Anti-Swing Control for a Behavior-Based Intelligent Crane System”, IEEE<br /> International Conference on Intelligent Robots and Systems, vol.2, pp. 1192-<br /> 1197. IEEE Press.Las Vegas (2003).<br /> [5]. Chang, CY., Hsu, K.C, Chiang, K.H, Huang, G.E, “Enhanced Adaptive<br /> Sliding Mode Fuzzy Control for Position and Anti-Swing Control of the<br /> Overhead Crane System”, IEEE International Conference on Systems, Man,<br /> and Cybermetics, vol.2, pp. 922-997, IEEE Press Taipei (2006).<br /> [6]. Nguyễn Văn Khang, “Cơ học kỹ thuật”, Nhà xuất bản Giáo dục (2009).<br /> [7]. Phan Xuân Minh, Nguyễn Doãn Phước, “Lý thuyết điều khiển mờ”, Nhà xuất<br /> bản Khoa học và Kỹ thuật (2006).<br /> <br /> <br /> 26 L. X. Hai, … , P. X. Minh, “Improving of control overhead… sliding mode control.”<br /> Nghiên cứu khoa học công nghệ<br /> <br /> TÓM TẮT<br /> NÂNG CAO CHẤT LƯỢNG ĐIỀU KHIỂN CẦN CẨU TREO BẰNG ĐIỀU<br /> KHIỂN TRƯỢT BẬC HAI THÍCH NGHI MỜ<br /> Bài báo đề xuất bộ điều khiển trượt bậc hai thích nghi mờ cho hệ cần cẩu<br /> treo 2D nhằm nâng cao chất lượng bám của xe, chống lắc cho tải trong<br /> trường hợp có nhiễu tác động. Các tham số của mặt trượt được chỉnh định<br /> bằng một hệ logic mờ nhằm thay đổi mặt trượt để hệ bám nhanh hơn và giảm<br /> thiểu lắc của tải. Các kết quả mô phỏng cho thấy chất lượng hệ thống được<br /> cải thiện đáng kể và có khả năng ứng dụng trong công nghiệp.<br /> Từ khóa: Điều khiển trượt bậc hai (SOSMC), Điều khiển trượt bậc hai thích nghi mờ (FASOSMC), Nhiều vào<br /> nhiều ra (MIMO), Điều khiển trượt bậc cao (HOSMC).<br /> <br /> <br /> Nhận bài ngày 05 tháng 8 năm 2016<br /> Hoàn thiện ngày 25 tháng 10 năm 2016<br /> Chấp nhận đăng ngày 26 tháng 10 năm 2016<br /> <br /> <br /> Address: 1Ha Noi University of Science and Technology.<br /> *<br /> Email: nga.vuthithuy@hust.edu.vn.<br /> <br /> <br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số 45, 10 - 2016 27<br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2