Kỹ thuật điều khiển & Điện tử<br />
<br />
IMPROVING OF CONTROL OVERHEAD CRANE QUALITY<br />
BASED ON THE FUZZY ADAPTIVE SECOND ORDER SLIDING<br />
MODE CONTROL<br />
Le Xuan Hai, Quach Thai Quyen, Le Van Hung, Nguyen Van Thai,<br />
Vu Thi Thuy Nga*, Phan Xuan Minh<br />
Abstract: This paper proposes a fuzzy adaptive second order sliding mode<br />
controller for 2D overhead crane model to improve the quality of position<br />
tracking, anti-swing in case existence of external disturbances. The sliding<br />
surface parameters are adjusted by a fuzzy logic system to change the sliding<br />
surface in order to track faster and make the payload oscillation smaller. The<br />
simulation results show that the system quality is improved and the applicability<br />
of the proposed controller in industrial practice.<br />
Keywords: SOSMC, FASODMC, MIMO, HOSMC.<br />
<br />
1. INTRODUCTION<br />
Crane is widely used to transport heavy load and hazardous materials in<br />
shipyards, factories and many kinds of industry. Therefore, researching on<br />
improving the control overhead crane quality is always implemented and<br />
developed by many researchers. Due to effect of the environment with unknown<br />
disturbances, sliding mode control on crane has been extremely attractive in recent<br />
years. High order control system are highly recommended and improved to<br />
increase the quality of controlling overhead crane system [1,4]. To solve the root<br />
problems for improving overhead crane system quality, both classic control and<br />
intelligent control are combined which is considered and researched [2,3,5].<br />
In this paper, a fuzzy adaptive second order sliding mode control is proposed to<br />
solve effectively the problem for overhead crane system. This control structure<br />
contains two sliding mode controller which have a parallel connection into a<br />
second order surface to control position and reduce sway angle of load at the same<br />
time. In order to adjust the parameters of sliding surface, a fuzzy logic system is<br />
used with inference rules are chosen by experience expert to help the system has<br />
suitable parameters to guarantee tracking trajectory faster and anti-sway angle of<br />
load under disturbance effect.<br />
This paper is divided into five parts: Introduction, Overhead Crane Dynamic<br />
model, Second Order Sliding Surface Construction, Sliding Surface Parameter<br />
Adjustment, Simulation and Results.<br />
2. CONTENTS<br />
2.1. Overhead crane dynamic model<br />
Overhead crane model is shown in figure 1 that includes: trolley and load.<br />
Where: mc , ml , l , u is the weight of trolley, the weight of load, the length of<br />
cable and impact force, respectively. Crane and load are considered like moving on<br />
Oxy plane.<br />
<br />
<br />
20 L. X. Hai, … , P. X. Minh, “Improving of control overhead… sliding mode control.”<br />
Nghiên cứu khoa học công nghệ<br />
<br />
<br />
<br />
<br />
Fig 1. Overhead crane model.<br />
The dynamic equations are constructed based on Lagrange type II [6] :<br />
d T T <br />
Qi* (1)<br />
dt qi qi qi<br />
Where: Qi* is generalized force, T is kinetic energy, is potential energy, qi<br />
is generalized coordinate.<br />
The kinetic and potential energies of the crane system are presented in the<br />
following equation:<br />
1 1<br />
T mc ml x 2 ml l 2 2 ml lx cos (2)<br />
2 2<br />
mgl cos <br />
T<br />
mc ml ml l cos <br />
x<br />
d T <br />
mc ml x ml l cos ml l 2 sin <br />
dt x <br />
T<br />
0; 0; Qx* u<br />
x x<br />
x ml l cos ml l 2 sin u<br />
(mc ml ) (3)<br />
T<br />
ml l 2 ml lx cos <br />
<br />
d T 2 <br />
ml l ml lx cos ml x sin <br />
dt <br />
T<br />
ml gl sin ; ml lx sin ; Q * 0<br />
<br />
<br />
l <br />
x cos g sin (4)<br />
From equation (3) and (4), dynamic model of overhead crane is obtained as<br />
followed:<br />
<br />
<br />
Tạp chí Nghiên cứu KH&CN quân sự, Số 45, 10 - 2016 21<br />
Kỹ thuật điều khiển & Điện tử<br />
<br />
x ml l cos ml l 2 sin u<br />
mc ml <br />
(5)<br />
l <br />
x cos g sin <br />
2.2. Second order surface construction<br />
x4 x x . The<br />
T T<br />
Defining the state variable: X x1 x2 x3<br />
parts of sate variable are position, velocity of trolley, sway angle and velocity of<br />
sway angle of load, respectively. The equation (3) can be rewriten as the the state<br />
space model belows:<br />
x1 x2<br />
x2 f1 ( X ) g1 ( X )u<br />
(6)<br />
x3 x4<br />
x4 f 2 ( X ) g 2 ( X )u<br />
Where :<br />
ml l sin ml g sin cos 1<br />
f1 ( X ) g1 ( X ) <br />
mc ml sin 2 mc ml sin 2 <br />
(7)<br />
m l 2 sin cos (mc ml ) g sin cos <br />
f2 ( X ) l g2 ( X ) <br />
mc ml sin 2 l mc ml sin 2 l<br />
x x x xd x xd <br />
Error e(t ) is defined as follows : e(t ) 1 d <br />
x3 d d <br />
Where: xd and d are the desired position and the sway angle of load, in this<br />
case d 0 . The state space model with error ex e1 , e e3 as belows:<br />
e1 e2<br />
e2 f1 ( X ) g1 ( X )u <br />
xd<br />
(8)<br />
e3 e4<br />
e4 f 2 ( X ) g 2 ( X )u<br />
The purpose of overhead crane control system is to move the load from initial<br />
position to desired position without sway. Hence, using two sliding surfaces is to<br />
separate the system as follows :<br />
s1 c1e1 e2<br />
(9)<br />
s2 c2 e3 e4<br />
Therefore, the second order surface is defined as :<br />
s s1 s2 (10)<br />
With c1 , c2 , and are the positive constants. Apply the index accessibility<br />
rule s k1 sgn( s ) k2 s s1 s2 , the control law is inferred :<br />
<br />
<br />
22 L. X. Hai, … , P. X. Minh, “Improving of control overhead… sliding mode control.”<br />
Nghiên cứu khoa học công nghệ<br />
<br />
f1 ( X ) f 2 ( X ) c1e2 c2 e4 xd k1 sgn( s ) k2 s<br />
u (11)<br />
g1 ( X ) g 2 ( X )<br />
However, ovehead crane system appears a highly frequent oscillation in the<br />
control law because of the sgn(s) function . To cut down the oscillation, this paper<br />
uses the saturation function sat(s) instead of using the sgn(s) function in the<br />
equation (9). The sat ( s ) function is defined as :<br />
sgn( s ), s 1<br />
sat ( s ) (12)<br />
s , s 1<br />
Therefore, u is now as :<br />
f1 ( X ) f 2 ( X ) c1e2 c2 e4 xd k1sat ( s ) k2 s<br />
u (13)<br />
g1 ( X ) g 2 ( X )<br />
2.3. Second order surface construction<br />
In the previous researches, the parameters , of the second order sliding<br />
surface are chosen to be positive. However, in this paper, the relationship of and<br />
is displayed by a coefficient k1 as follows: k1 where k1 0.6<br />
Since then, the signal control u is rewriten as :<br />
f ( X ) f 2 ( X ) c1e2 k1 c2 e4 xd k1sat ( s ) k2 s<br />
u 1 (14)<br />
g1 ( X ) k1 g 2 ( X )<br />
Accordingly, the second order sliding surface in (10) depend on the value .<br />
To select a suitable sliding surface, we recommend a fuzzy logic system to appoint<br />
the coefficient of this surface. The information got from the error position e1 and<br />
the first derivative positon e1 is used to adjust . The sets of input fuzzy which<br />
are chosen to fuzzise are A (the error position e1 ) and B (the derivation e1 ).<br />
The generalized fuzzy system is built according to the linear method [7] which<br />
includes 3 fuzzy sets for each of input variables: -1 0 1 and 5 fuzzy sets for output<br />
variables: -2 1 0 1 2. Defined, i is the set for A variable, j is the set for the B<br />
variable, k is the set for output variable, so the generalized linear rule always be<br />
satisfied: i j k 0 .<br />
The rule is defined in the table belows:<br />
<br />
<br />
<br />
<br />
The structure of control second order generalized sliding system is shown in fig 2.<br />
<br />
<br />
Tạp chí Nghiên cứu KH&CN quân sự, Số 45, 10 - 2016 23<br />
Kỹ thuật điều khiển & Điện tử<br />
<br />
<br />
<br />
<br />
Fig 2. The control structure.<br />
3. SIMULATION RESULT<br />
To verify the effectiveness of this proposed method. Fuzzy adaptive second<br />
order sliding mode control (FASOSMC) is used for overhead crane system with the<br />
following parameters: mc 6(kg ) , ml 3(kg ) , g 9.8(m / s 2 ) , L 1(m) . The<br />
desired position is xd 3(m) and the selected parameters of FASOSMC are:<br />
k 3.5 , k1 0.6 , c1 2 , c2 0.01 , 3.85 .<br />
The simulation is aim to give some estimations :<br />
The effectiveness of FASOSMC compared to SOSMC<br />
The ablility in against disturbance of FASOSMC<br />
Simulation 1 : Compare the quality of FASOSMC to SOSMC<br />
<br />
<br />
<br />
<br />
Figure 3a. The position of trolley. Figure 3b. The velocity of trolley.<br />
<br />
<br />
<br />
<br />
Figure 3c. The angle of load . Figure 3d. The angle velocity of load.<br />
<br />
<br />
24 L. X. Hai, … , P. X. Minh, “Improving of control overhead… sliding mode control.”<br />
Nghiên cứu khoa học công nghệ<br />
<br />
The results are shown in figure 3. Inside, figure 3a shows the position of trolley<br />
when using two above controllers. Similarly, figure 3b, 3c, 3d show the velocity of<br />
trolley, the sway angle of load, the sway angle velocity of load, respectively.<br />
Table 1. The quality comparison.<br />
Settling time Overshoot Maximum angle of load<br />
Controller<br />
(s) (%) (rad)<br />
SOSMC 5 6.7 0.9<br />
FASOSMC 2.5 0 0.4<br />
<br />
The simulation results show that the quality of controlling system which using<br />
FASOSMC is better than using SOSMC, trolley tracks the desired trajectory faster<br />
and the sway angle of load is smaller.<br />
Simulation 2: Overhead crane with FASOSMC under disturbance affect<br />
The parameters of both the crane system and the controlling system are kept<br />
unchanged. However, the disturbance is added from 2(s) to 2.1(s) and the<br />
amplitude is 120. Here are the results of both with and without disturbance of<br />
FASOSMC in figure 4 below:<br />
<br />
<br />
<br />
<br />
Figure 4a. The position of trolley. Figure 4b. The velocity of trolley.<br />
<br />
<br />
<br />
<br />
Figure 4c. The sway angle of load. Figure 4d. The angle velocity of load.<br />
<br />
<br />
Tạp chí Nghiên cứu KH&CN quân sự, Số 45, 10 - 2016 25<br />
Kỹ thuật điều khiển & Điện tử<br />
<br />
Table 2. The quality of overhead crane system under disturbance effect.<br />
Settling Overshoot Maximum sway angle of load<br />
FASOSMC<br />
time (s) (%) (rad)<br />
With disturbance 2.5 0 0.4<br />
Without disturbance 5 5 0.4<br />
<br />
The system reaches the setting point right after 6s in the case with and without<br />
disturbance. Hence, using FASOSMC for overhead crane system is better to reduce<br />
disturbance.<br />
<br />
<br />
4. CONCLUSIONS<br />
The simulation results show that FASOSMC as mentioned improves the quality<br />
of the overhead crane control system. With the simple control structure, FASOSMC<br />
is easy to be installed in digital technology.<br />
Acknowledgement: This research is funded by the Hanoi University of Science and<br />
Technology (HUST) under project number T2016-PC- 107.<br />
<br />
<br />
<br />
REFERENCES<br />
[1]. Chiou, J.S, Lium M.T, “Numerical Simulation for Fuzzy-PID Controller and<br />
Helping EP Reproduction with PSO hybrid algorithm”, Simulation Modeling<br />
Practice and Theory 17,1555-1565 (2009).<br />
[2]. Liu, D., J., Zhao, D., Wang, “Adaptive Sliding Mode Fuzzy Control for Two<br />
Dimensional Overhead Crane”, Mechatronics 15, 505-522 (2005).<br />
[3]. Shu, K., -K, Jen, C., -L, Shang, L., -J, “Design of Sliding Mode Controller for<br />
Anti-swing Control of Overhead Cranes”, IECON Annual Conference of<br />
IEEE Industrial Electronics Society, pp. 147-152 (2005).<br />
[4]. Wang, J., Li, H., Karray, F., Basir, O., “Real World Implementation of Fuzzy<br />
Anti-Swing Control for a Behavior-Based Intelligent Crane System”, IEEE<br />
International Conference on Intelligent Robots and Systems, vol.2, pp. 1192-<br />
1197. IEEE Press.Las Vegas (2003).<br />
[5]. Chang, CY., Hsu, K.C, Chiang, K.H, Huang, G.E, “Enhanced Adaptive<br />
Sliding Mode Fuzzy Control for Position and Anti-Swing Control of the<br />
Overhead Crane System”, IEEE International Conference on Systems, Man,<br />
and Cybermetics, vol.2, pp. 922-997, IEEE Press Taipei (2006).<br />
[6]. Nguyễn Văn Khang, “Cơ học kỹ thuật”, Nhà xuất bản Giáo dục (2009).<br />
[7]. Phan Xuân Minh, Nguyễn Doãn Phước, “Lý thuyết điều khiển mờ”, Nhà xuất<br />
bản Khoa học và Kỹ thuật (2006).<br />
<br />
<br />
26 L. X. Hai, … , P. X. Minh, “Improving of control overhead… sliding mode control.”<br />
Nghiên cứu khoa học công nghệ<br />
<br />
TÓM TẮT<br />
NÂNG CAO CHẤT LƯỢNG ĐIỀU KHIỂN CẦN CẨU TREO BẰNG ĐIỀU<br />
KHIỂN TRƯỢT BẬC HAI THÍCH NGHI MỜ<br />
Bài báo đề xuất bộ điều khiển trượt bậc hai thích nghi mờ cho hệ cần cẩu<br />
treo 2D nhằm nâng cao chất lượng bám của xe, chống lắc cho tải trong<br />
trường hợp có nhiễu tác động. Các tham số của mặt trượt được chỉnh định<br />
bằng một hệ logic mờ nhằm thay đổi mặt trượt để hệ bám nhanh hơn và giảm<br />
thiểu lắc của tải. Các kết quả mô phỏng cho thấy chất lượng hệ thống được<br />
cải thiện đáng kể và có khả năng ứng dụng trong công nghiệp.<br />
Từ khóa: Điều khiển trượt bậc hai (SOSMC), Điều khiển trượt bậc hai thích nghi mờ (FASOSMC), Nhiều vào<br />
nhiều ra (MIMO), Điều khiển trượt bậc cao (HOSMC).<br />
<br />
<br />
Nhận bài ngày 05 tháng 8 năm 2016<br />
Hoàn thiện ngày 25 tháng 10 năm 2016<br />
Chấp nhận đăng ngày 26 tháng 10 năm 2016<br />
<br />
<br />
Address: 1Ha Noi University of Science and Technology.<br />
*<br />
Email: nga.vuthithuy@hust.edu.vn.<br />
<br />
<br />
<br />
<br />
Tạp chí Nghiên cứu KH&CN quân sự, Số 45, 10 - 2016 27<br />