YOMEDIA
![](images/graphics/blank.gif)
ADSENSE
Kinh Toán học Tích phân hàm vô tỉ
66
lượt xem 10
download
lượt xem 10
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
Tham khảo tài liệu 'kinh toán học tích phân hàm vô tỉ', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Kinh Toán học Tích phân hàm vô tỉ
- Kinh Toán học Tích phân hàm vô tỉ:................................ ................................ ................................ ......... 3 1 ax b 1/ I dx ................................ ................................ ................................ .......... 5 x cx d 1 ax b 2/ I dx ................................ ................................ ................................ ....... 8 2 x cx d dx 3/ I 3 3 ................................ ................................ ................................ ................. 9 x a dx 4/ I 3 3 ................................ ................................ ................................ ............... 10 x a dx 5/ I 4 ................................ ................................ ................................ ................ 11 4 x a dx 6/ I 4 ................................ ................................ ................................ ............... 13 4 x a dx 7/ I 6 6 ................................ ................................ ................................ ............... 13 x a dx 8/ I 6 ................................ ................................ ................................ ............... 14 6 x a dx 9/ I 8 8 ................................ ................................ ................................ ............... 14 x a dx * I ................................ ................................ ................................ ................... 15 8 1 x dx n ¥ * ................................ ................................ ............................. 16 10/ I 1 x 2n dx 11/ I n ................................ ................................ ................................ ............. 20 n x a dx 6/ I ................................ ................................ ................................ ..... 21 2 ax bx c mx n dx 7/ I ................................ ................................ ................................ ..... 22 2 ax bx c dx 8/ I ................................ ................................ ......................... 22 2 x q ax bx c dx * I ................................ ................................ ................................ .... 25 3 x 2 4x 7 x3 x 1 * I dx ................................ ................................ ................................ ... 25 2 x 2x 2 1 dx * I ................................ ................................ ................................ ... 26 1 x nn n 1 x 0 dx * I ................................ ................................ ............................... 26 x 1 x 1 2 4 dx * I ................................ ................................ ................................ ..................... 1x x x * I 1 u 2 du 1 x 2 dx ................................ ................................ ....................... 28 0 x a * I dx ................................ ................................ ................................ ............. 29 xa ax * I dx ................................ ................................ ................................ .................. xa x 2000 .dx ................................ ................................ ................................ ................ * I 2004 x 1 1
- dx * I ................................ ................................ ................................ ............. 2 ax bx c dx * I ................................ ................................ ................................ ........ 2 ax 2 bx c mx n * I dx ................................ ................................ ................................ ......... 2 ax bx c * I x 2 x 2 a 2 .dx ................................ ................................ ................................ ......... n * I x ax b dx ................................ ................................ ................................ ........... x.dx * I ................................ ................................ ................................ ................. n ax b x 2 .dx * I ................................ ................................ ................................ .................... ax b x c .dx * I ................................ ................................ ................................ ................ b x a m x 3dx 1 * I ................................ ................................ ................................ .............. 2 0x x 1 * I x 2 a 2 x 2 .dx ................................ ................................ ................................ ......... a 2 x 2 .dx * I ................................ ................................ ................................ ............. 2 x * I x 3 a 2 x 2 .dx ................................ ................................ ................................ ......... * I x a 2 x 2 .dx ................................ ................................ ................................ ........... * I x 5 a 2 x 2 .dx ................................ ................................ ................................ ......... dx * I ................................ ............................ Error! Bookmark not defined. 2 2 x. x a x 2 .dx * I ................................ ................................ ................................ ............... 2 x2 a2 z * x sin arctan z ................................ ................................ ............................. 2 1 z 1 * x cos arctan y ................................ ................................ ............................ 2 1 y x 3 .dx * I ................................ ................................ ................................ ............... 2n x2 a x 2m 1.dx * I m 1 ................................ ................................ ................................ .... 2n x2 a n 1 i n 1i n n * Cm : a b a b a .b ................................ ................................ .......... 43 i0 x 4 .dx * I ................................ ............................ Error! Bookmark not defined. 22 x2 a dx * I ................................ ................................ ................................ ............. 23 x2 a dx * I ................................ ................................ ................................ ............. 5 x2 a2 2
- dx * I ................................ ................................ ................................ ............. 3 a 2 x2 dx * I ................................ ................................ ................................ ........ 2 2n 1 a2 x dx * I ................................ ................................ ................................ ........ 2 2n 1 x2 a x a b x .dx ................................................................................................... * I dx * I ................................ ................................ ................................ ....... x a b x dx * I ................................ ................................ ................................ .. 3 x a b x dx * I ................................ ................................ .............................. 2n 1 x a b x 3 * I x a b x .dx .............................................................................................. dx * I ................................ ................................ ................................ ....... x a x b dx * I ................................ ................................ ................................ ... x 1 x 1 2 Tích phân hàm vô tỉ: ax b ax b ax b tn ax b t n .cx t n .d a / R x, n dx doi bien : t n cx d cx d cx d t n .d b t n n x a c.t .d b x a c.t n ' n' t .d b a c.t t .d b a c.t dt n.d.t n 1 a c.t n t n .d b n.c.t n 1 dt n n n dx 2 2 a c.t n a c.t n n.t n 1 ad bc dt a.n.d.t n 1 b.n.c.t n 1 dt n2 n2 a c.t a c.t 3
- t3 1 6t 2 .dt dx x 1 dx x 1 VD1: I 3 . Dat t 3 x 3 , dx 2 x 1 x 1 x 1 x 1 x 12 t 1 3 3 t 1 6t 2 .dt t3 1 6t 3 .dt 2t 3 6t 3 .dt t 3 1 3dt I t 3 1 3 . 3 3 2 2 2 t t 1 t 1 t 1 2t t 1 3 3 3 1 t 1 1 1 A B.t C A t 2 t 1 B.t C t 1 1 2 t 3 1 t 1 t 2 t 1 t 1 t t 1 1 cho t 0 A 1 B.t C 1 Cho t 1 3A 1 A 3 1 2 7 2 1 C 1 C cho t 2 7A 2B C 1 2B 1 B 3 3 3 3 3 d t 1 t 2 dt 1 1 t2 3dt 3 3 2 3 t 1 3 t 2 t 1 t 1 t 1 t 1 t t 1 d t2 t 1 3 1 2t 4 1 dt ln t 1 2 dt ln t 1 2 2 2 t t 1 2 t t 1 2 t t 1 1 3 dt ln t 1 ln t 2 t 1 2 2 2 t t 1 1 d t 3 dt 3 32 2t 1 dx 1 x 2 . arctg arctg 2 x a2 a 2 2 t2 t 1 2 23 a 3 2 1 3 t 2 2 t 2 t 1 1 1 2t 1 2t 1 2 I ln t 1 ln t 2 t 1 3.arctg ln 3.arctg t 12 2 2 3 3 ax b ax b ax b tn ax b t n .cx t n .d a / R x, dx doi bien : t n n cx d cx d cx d t n .d b t n n x a c.t .d b x a c.t n ' ' t n .d b a c.t n t n .d b a c.t n n.d.t n 1 a c.t n t n .d b n.c.t n 1 dx dt dt 2 2 a c.t n a c.t n n.t n 1 ad bc dt a.n.d.t n 1 b.n.c.t n 1 dt n2 n2 a c.t a c.t 4
- 1 ax b 1/ I dx x cx d 1 ax b ax b ax b tn ax b t n .cx t n .d a / I .n dx doi bien : t n x cx d cx d cx d t n .d b t n n x a c.t .d b x a c.t n ' n' t .d b a c.t t .d b a c.t dt n.d.t n 1 a c.t n t n .d b n.c.t n 1 dt n n n dx n2 n2 a c.t a c.t n.t n 1 ad bc dt and.t n 1 bnc.t n 1 dt n2 n2 a c.t a c.t a c.t n .t n.t n 1 ad bc dt n.t n ad bc dt I n t .d b a c.t a c.t n t n .d b n2 t 2 dt M N 2 ad bc dt Cho n 2 I 2 ad bc 2 a c.t 2 t 2 .d b a c.t 2 t .d b t2 M N M t 2 .d b N a c.t 2 t 2 a c.t t .d b a c.t t .d b 2 2 2 2 Mb M 0, P 0 Na Mb 0 N a a b M N Md Nc 1 M d bc 1 M ad bc 1 ad bc ad bc a a a b I 2 dt 2 a c.t 2 t .d b a a t t adt adt a1 1a dx 1 ax c c . .ln . ln ln 2 2a a x a c.t 2 2 2 c 2c a a a a a x 2 t t 2 c t c c c c b b t t bdt bdt b1 1b d d . .ln . ln t 2 .d b 2 d 2d b b b b 2 t t 2 d t d d d d t 2 dt a b 2 dt I 2 ad bc 2 a c.t 2 t 2 .d b a c.t 2 t .d b a b t t 1 a 1b c d 2 . ln . ln 2 c 2d a b t t c d 1 a b d.t a c.t 1 b 2 . ln . ln 2 c a c.t 2 d b d.t a ax b b ax b a 1 ax b cx d b ln c d cx d dx I ln x cx d c d a ax b b ax b c cx d d cx d 5
- ' a ax b b ax b a cx d b ln c d cx d Kiem tra ket qua : ln c d a ax b b ax b c cx d d cx d ' ' a ax b b ax b a b c cx d d cx d ln ln c d a ax b b ax b c cx d d cx d ' a a ax b b b ax b ax b a ax b b ln ln ln ln c c cx d c cx d d d cx d d cx d a cx d c ax b ' ax b cx d 2 cx d ' a ax b ax b ax b ' 2 2 a ax b c cx d cx d cx d ln c cx d a ax b a ax b a ax b c cx d c cx d c cx d ad bc cx d . cx d 2 2 ax b ad bc cx d a ax b a ax b 2 2 cx d ax b c cx d c cx d a cx d c ax b ' ax b cx d 2 cx d ' a ax b ax b ax b ' 2 2 a ax b c cx d cx d cx d ln c cx d a ax b a ax b a ax b c cx d c cx d c cx d ad bc cx d . 2 cx d ad bc cx d 2 ax b a ax b a ax b 2 2 cx d ax b c cx d c cx d ' ' a ax b a ax b ln ln c cx d c cx d ad bc cx d 1 1 2 ax b a ax b ax b a 2 cx d c cx d c cx d a ax b ax b a ad bc cx d c cx d c cx d 2 ax b a ax b 2 cx d c cx d ad bc cx d a 1 .2 c a cx d c ax b 2 2 cx d ax b c cx d 6
- ad bc ad bc cx d . a . c cx d cx d a 1 ac . cx d 2 2 ax b c ad bc cx d ax b c ad bc cx d. ax b c cx d ' a ax b a a c cx d ln c a ax b cx d. ax b c cx d a cx d c ax b ' ax b cx d 2 cx d ' b ax b ax b ax b ' 2 2 b ax b d cx d cx d cx d ln d cx d b ax b b ax b b ax b d cx d d cx d d cx d ad bc cx d . 2 cx d ad bc cx d 2 ax b b ax b b ax b 2 2 cx d ax b d cx d d cx d ' ad bc cx d b ax b ln d cx d b ax b 2 2 cx d ax b d cx d ' ' b ax b b ax b ln ln d cx d d cx d ad bc cx d 1 1 2 ax b b ax b ax b b 2 cx d d cx d d cx d b ax b ax b b ad bc d cx d d cx d cx d 2 ax b b ax b 2 cx d d cx d ad bc cx d b 1 .2 d b cx d d ax b 2 2 cx d ax b d cx d ' b ax b ad bc cx d b b 1 bd cx d d cx d ln cx d ax b d x bc ad cx d .x ax b 2 d b ax b d cx d d cx d b cx d.x ax b ' ' a ax b b ax b a b a b c cx d d cx d ln ln cx d ax b cx d .x ax b c d a ax b b ax b c cx d d cx d ax b ax b x cx d ax b x cx d 7
- 1 ax b 2/ I dx 2 cx d x 1 ax b ax b ax b t2 a/I 2. dx doi bien : t cx d cx d cx d x t 2 .d b 2.t ad bc dt x dx 22 2 a c.t a c.t 22 a c.t .t 2.t ad bc dt 2 ad bc t 2dt I 2 22 2 t .d b a c.t t .d b 2 2 t2 M.t N P.t Q M.t N t 2 .d b P.t Q t 2 t .d b t .d b 2 2 t 2 .d b 2 2 Md.t 3 Nd.t 2 Mb.t Nb P.t Q t 2 Md 0, Nd 1 M 0, P 0 P Mb 0 1 b N , Q Nb Q Nb 0 d d t 2 dt dt b.dt 2 ad bc I 2 ad bc d t 2 .d b 2 2 t .d b 2 d t 2 .d b b t dt 1 dt 1 1 1d b d.t d 2. ln 2 ln 2 2 d t 2 .d b d b d b b d2b b d.t 2 t 2 t d d d b.dt b dt b Dat a 2 d2 2 2 d 2 d t .d b b t2 d b b dt t 1 ax 2 2 2 M 2 3 ln 22 d 2a x a 2 4a ax d 2 t a b t 2 2 b 1 b t 1 b d .t 1 b d.t .ln d 2 2. . .ln 3 3 2 b 2 b d 2b t b d d b d 2 t b b d.t 4 b t 4 d d d d d b d.t t d ln 2 2 t b 4d b b d.t 2 1 ax dx x x 1 2 2 I1 2 2 3 ln 2 2 2 2 ax 2a x a 2a x a 2a 4a x2 a2 8
- dt b.dt I 2 ad bc d t 2 .d b 2 2 d t .d b d.t b d.t 1d b t d 2 ad bc 2 ln ln 2 d 2 b b d.t d.t 2 t b 4d b b 1 ln b d.t 1 t 2 ad bc 4 bd 2 t 2 b 3 b d.t 2 bd ax b ax b b d. cx d 1 1 1 ax b cx d dx 2 ad bc ln I 2. 4 bd 2 ax b b cx d 3 x ax b 2 bd b d. cx d cx d 1 x 1 * I .dx x x 1 2' 2' 1 t 1 t 1 t 1 t 2 dt 2 2 1 x 1 x 1 1 t .dx dat t 2 * I x , dx 2 22 x x 1 x 1 1 t 1 t 2t 1 t 2 2t 1 t 2 4t 2 .dt 4t.dt dt I 1 t 2 1 t 2 22 22 1 t 1 t 4t 2 a b a 1 t 2 b 1 t 2 4t 2 dat 1 t2 1 t2 1 t2 1 t2 a b 0, b a 4 b 2, a 2 4t 2 .dt 2 2 t 1 I ln 2arc tan t C 1 t 2 1 t 2 1 t 2 1 t 2 t 1 x 1 1 x 1 x 1 1 x 1 x 1 x 1 x 1 I .dx ln 2arc tan ln 2arc tan C x x 1 x 1 x 1 x 1 x 1 x 1 1 x 1 dx 3/ I x3 a3 dx dx 1 m px q 1/ I 2 x a x 2 ax a 2 x3 a3 x a x ax a 2 x a x 2 ax a 2 m x 2 ax a 2 px q x a 1 x 2 m p am.x ma 2 ap.x q.x aq 1 1 a2 1 2 2 2 Sai : Cho x a 3a m 1 m 2 Cho x 0 m a q a 1 q 2 1 3 3a 3a 7 2a Cho x 2a 7a 2 m 2ap q a 1 2a 2 p 1 7 6a 2 p 2a 3 6a 2 p 2a 4 3 3 1 x 2 m p x am ap q ma 2 aq 1 m p 0 m p 2 am ap q 0 2am q 0 q 2am 3a 1 1 2 ma aq 1 ma 2 2ma 2 1 m 2 , p m 2 3a 3a 9
- x 2 1 dx a 3a 2 3a dx dx I 2 2 x a x 2 ax a 2 x ax a 2 x a 3a x 2a 1 2x a 3a dx ln x a ln x a 1 dx 3a 2 3a 2 3a 2 6a 2 x 2 ax a 2 x 2 ax a 2 x 2 ax a 2 ' dx 3a x 2a ln x a ln x a 1 1 dx 2 2 2 dx 2 3a x ax a 2 6a x 2 ax a 2 x ax a 2 3a 2 3a 2 a dx ln x a 1 1 2 ln x 2 ax a 2 3a 2 6a 2 2 2a 2 a 3 a x 2 2 2ln x a ln x 2 ax a 2 12 a 2 . .arctg x . 2 a 3 6a 2 2a a 3 2 ln x a ln x 2 ax a 2 1 2x a .arctg 6a 2 a2 3 a3 2 x a dx 1 1 2x a I 3 3 2 ln 2 2 .arctg x ax a 2 a 3 x a 6a a3 dx 4/ I x3 a3 dx dx 1 m px q 1/ I 3 3 2 x a x 2 ax a 2 x a x ax a 2 x a x 2 ax a 2 x a m x 2 ax a 2 px q x a 1 x 2 m p am.x ma 2 ap.x q.x aq 1 1 1 x 2 m p x am ap q ma 2 aq 1 m p 0 m p 2 am ap q 0 2am q 0 q 2am 3a 1 1 2 ma aq 1 ma 2 2ma 2 1 m 2 , p m 2 3a 3a x 2 1 dx a 3a 2 3a dx dx I 2 2 x a x 2 ax a 2 x ax a 2 xa 3a x 2a 1 2x a 3a dx ln x a ln x a 1 dx 2 2 x ax a 2 2 3a 22 2 x ax a 2 3a 3a 6a x 2 ax a 2 ' dx 3a ln x a 1 dx 2 2 6a x 2 ax a 2 x ax a 2 3a 2 a d x ln x a 1 1 2 ln x 2 ax a 2 3a 2 6a 2 2 2a a 3 2 a x 2 2 10
- 2ln x a ln x 2 ax a 2 12 a 2 . .arctg x . 2 a 3 6a 2 2a a 3 2 ln x a ln x 2 ax a 2 1 2x a .arctg 6a 2 a2 3 a 3 2 x a dx 1 1 2x a 3 3 2 ln 2 2 .arctg x ax a 2 a 3 x a 6a a3 2 x a dx 1 1 2x a * 3 3 2 ln 2 2 .arctg x ax a 2 a 3 x a 6a a3 2 x a dx 1 1 2x a * 3 3 2 ln 2 2 .arctg 2 x a 6a x ax a a3 a3 2 x a 1 .arctg 2x a dx dx 1 * 3 3 3 ln 2 a 3 2 x a x a 2 a 2 3 3 6 a x a x a 2 x a 1 1 2x a 2 ln 2 2 . arctg x ax a 2 a 3 6a a 3 d x 1 dx dx * I 3 x 1 x 12 3 x 1 3 x 1 x 2 x 1 x -1 1 t 2 3t 3 t 2 3t t 3 dt dt 1 dt 2 dt 2 t 3t 3 3 t 2 3t 3 3 t t 3t 3 t t 1 dt 1 d t 3t 3 3 2 1 dt 1 2t 3 dt 3 dt dt 2 3 t 2 t 3t 3 2 t 2 3t 3 3 t 2 t 2 3t 3 2 3 3 2 t 2 4 t2 1 x 2 2x 1 1 1 1 2t 3 2x 1 ln 2 3arctg c ln 2 arctg c 3 2 t 3t 3 6 3 x x 1 3 3 d x 1 dx dx * I3 = x 3 +1 x 1 x 2 x 1 x 1 x 12 3 x 1 3 1 t 2 3t 3 t 2 3t t 3 dt dt 1 dt 2 dt 2 t 3t 3 3 t 2 3t 3 3 t t 3t 3 t t 1 dt 1 d t 3t 3 3 2 1 dt 1 2t 3 dt 3 dt dt 2 2 2 2 3 3 t 2 t 3t 3 2 t 3t 3 3 t 2 t 3t 3 2 t3 2 4 t2 1 x 2 2x 1 1 1 1 2t 3 2x 1 ln 2 3arctg c ln 2 arctg c 3 2 t 3t 3 6 3 x x 1 3 3 dx 5/ I x4 a4 dx dx 1 Ax B C D 2/ I 4 2 x2 a2 x a x a x2 a2 x a4 x a x a x a2 x ax a Ax B x 2 a 2 C x a x 2 a 2 D x a x 2 a 2 1 1 Dk : x a 1 1 ko the cho x a D.2a.2a 2 1 D , cho x a C 2a .2a 2 1 C 3 sai vi x a 4a 3 4a D 1 Ax B C D 4 Ax B C 4 f x 2 1 x a 4 4 x a x a x a x a 2 2 2 x a x a x a 11
- lim 4x 3.D qui tac L 'Hopital 4a 3.D 1 D D x4 a4 1 lim f x lim 4a 3 x a x a x a x a lim 4x 3.C 4a 3.C 1 C C x4 a4 1 lim f x lim 4a 3 x a x a x a x a Ax B x 4 a 4 Ax B .4x 3 lim Ax B .2x 2 lim f x lim lim x2 a2 2x x i.a x i.a x i.a x i.a Ax B x 4 a 4 Ax B .4x 3 2 Ai.a B 1 lim f x lim 2a lim x 2 2 2x a x i.a x i.a x i.a 1 lim Ax B .2x 2 2a 2 Ai.a B 1 A 0, B 2a 2 x i.a 1 Ax 3 Bx 2 a 2 Ax a 2 B C x 3 ax 2 a 2 x a 3 D x 3 ax 2 a 2 x a 3 1 x 3 A C D x 2 B aC aD x a 2 A a 2 C a 2 D a 2 B a 3C a 3D 1 a 2 C D A 0 A C D A C D 0 A C D 0 2 C D 0 C D, A 0 B aC aD 0 a 2 C D A 0 B aC aD 0 B a C D , C D B 2aC a 2 B aC aD 1 a 2 2aC aC aC 1 2 a B aC aD 1 a 0 1 4a 3C 1 C 3 4a 1 1 1 A 0, C , D 3, B 2 4a 3 4a 2a 1 d x a 1 dx a dx dx 1 dx I 4 2 2 2 3 3 4 4a x a 4a x a 2 2 x a x ax a x a 2a x a x ln x a ln x a 11 1 x a 1 x 2 . .arctg 3 ln .arctg C 3 x a 2a 3 a a a 2a 4a 4a a xb a x b2 dx dx 1 12 21 22 I 4 4 2 x a 2 x2 a2 x2 a 2 x2 a2 x a2 x a x a a1x b1 x 2 a 2 a 2 x b 2 x 2 a 2 1 x 3 a1 a 2 x 2 b1 b 2 x a1a 2 a 2 a 2 b1a 2 b 2 a 2 1 1 1 a1 a 2 0, b1 b 2 0 b1 b2 , b1a 2 b 2 a 2 1 2b1a 2 1 b1 , b2 2 2a 2 2a dx 1 a.du arctgu 1 x dx 1 ax I1 2 2 2 C arctg C I2 2 ln x a2 a u 1 x a 2 2a a x a a a 1 dx 1 dx 1 ax 1 x I 2 2 2 2 2 3 ln 3 arctg C 2a x a 2 4a a x 2a a 2a x a Ax B dx dx , đưa tam thức bậc 2 về dạng tổng hoặc hiệu bình phương 2 2 ax bx c ax bx c 12
- dx 6/ I x4 a4 1 x2 a2 x2 a2 1 x2 a2 x2 a2 dx I 4 2 dx 2 4 dx 4 dx 4 4 2a x 1 x a 2a x 1 x 1 a2 a2 2 2 a a 1 2 1 2 d x d x 1 1 x x x dx x dx 2 2 4 4 22 2 2 2a x 2 a a 2a 2 xa a 2 x2 2 2 2 x 2 x x x x x2 a2 x2 x 2 a 2 11 1 2 arctg ln 2 C 2 2 x x 2 a2 2a 2 x2 dx 7/ I x6 a6 dx dx I 6 6 3 3 x a x3 a 3 x a a1x 2 b1x c1 a 2 x 2 b2 x c2 1 x x x x3 a3 3 3 3 3 3 3 a a a a1x 2 b1x c1 x 3 a 3 a 2 x 2 b 2 x c2 x 3 a 3 1 x 5 a1 a 2 x 4 b1 b 2 x 3 c1 c 2 x 2 a1a 3 a 2 a 3 x b1a 3 b2 a 3 c1a 3 c2 a 3 1 1 1 a1 a 2 b1 b 2 0, c1 c2 , c1a 3 c2 a 3 1 2c1a 3 1 c1 , c2 3 2a 3 2a dx 1 dx 1 dx I 3 3 3 2a 3 x 3 a 3 2a x3 a3 x3 a3 x a 2 x a dx 1 1 2x a 2 ln 2 2 .arctg 3 3 x ax a 2 a 3 x a 6a a3 2 x a dx 1 1 2x a 2 ln 2 2 .arctg 3 3 x ax a 2 a 3 x a 6a a3 2 2 x a x a dx 1 1 2x a 1 I 6 6 ln 2 5 .arctg ln 2 12a 5 x ax a 2 2a 3 a 3 12a 5 x ax a 2 x a x a 2 x 2 ax a 2 1 1 2x a 1 2x a 2x a 5 .arctg ln arctg arctg a 3 12a x a 2 x 2 ax a 2 5 2a 5 2a 3 3 a3 a 3 13
- dx 8/ I x6 a6 1 x4 a 4 x4 a 4 1 x 4 x 2 a 4 x 2 x 2 a 2 x 2 a 2 dx dx I6 = 6 dx x2 a2 x4 x2 a4 6 6 6 2 2 x +a x a 1 a 2 dx x 2 a 2 dx 1 dx d x3 x 2 dx 1 dx x2 1 2 6 4 2 4 2 6 2 2 3 x3 2 a3 2 x 2 a 2 1 2 x a x x a 2 x a x a x2 x 3 x 2 3a .arctg arctg d xa xa 3 x 3 a a 11 x1 1 x arctg 3 arctan x ln 2 a a 3 2 2 6a 3 2 3 xa 3 a 3a a x x x x 3 x 3a 2 .arctg arctg x2 x 3 a a a 1 ln 2 C 6a 3 2 3 x x 3a dx 9/ I x8 a8 dx dx I 8 8 4 4 x a x4 a4 x a a1x 3 b1x 2 c1x d1 a 2 x 3 b2 x 2 c2 x d 2 1 x x x x4 a4 4 4 4 4 4 4 a a a a1x 3 b1x 2 c1x d1 x 4 a 4 a 2 x 3 b 2 x 2 c 2 x d 2 x 4 a 4 1 x 7 a1 a 2 x 6 b1 b 2 x 5 c1 c 2 x 4 d1 d 2 x 3 a1a 4 a 2 a 4 x 2 b1a 4 b 2 a 4 x c1a 4 c 2a 4 d1a 4 d 2 a 4 1 a1 a 2 b1 b 2 c1 c2 0, d1 d 2 0 d1 d 2 1 1 d1a 4 d 2 a 4 1 2d1a 4 1 d1 , d2 4 a4 a dx dx 1 dx 1 dx I 4 4 4 4 4 x8 a 8 x a 4 x4 a4 x a4 a x a4 a dx 1 x a 1 x I1 3 ln 3 .arctg C x 4 a 4 4a x a 2a a x2 a2 x2 x 2 a2 1 dx 1 1 I2 4 2 arctg ln 2 C 4 2 2 x x 2 a2 x a 2a 2 x2 dx 1 dx 1 dx I 8 8 4 4 4 x4 a4 a x a4 x a a x2 a2 x2 x 2 a 2 1 x a 1 x 1 1 7 ln 7 .arctg .arctg .ln 2 C 6 6 2 x a 2a a 2 2a 4a x2 4 2a x x 2a 14
- dx * I 1 x8 1 2.x 2 x 4 1 2.x 2 x 4 dx I dx 8 2 2 4 2 4 1 x 2 2.x . 1 2.x x 1 2.x x 1 2.x 2 x 4 1 2.x 2 x 4 dx dx 2 2 4 2 4 2 2 4 2 4 2 2.x . 1 2.x x 1 2.x x 2 2.x . 1 2.x x 1 2.x x dx dx Ja Jb 2 2 4 2 2 4 2 2.x . 1 2.x x 2 2.x . 1 2.x x 1 2.x 2 x 4 2.x 2 x 4 dx Ja dx 2 2 4 2 2 4 2 2.x . 1 2.x x 2 2.x . 1 2.x x x2 dx dx dx 4 2 2 2 4 2. 1 2.x x 2 2. 1 2.x x 2 2.x x2 2 1 1 1 1 . dx .K a 3 2 4 3 2.x 2 2 1 2.x x 2.x 2 2 1 2 2 2 2 x 1 . x 1 x 1 x2 2 x2 11 2 2 Ka dx dx dx 2 4 2 4 2 4 1 2.x x 1 2.x x 1 2.x x 1 2 2 1 2 2 1 2 2 1 2 2 2 x 1 . x 1 . x 1 x 1 . x 1 2 2 2 2 dx dx 2 4 2 4 1 2.x x 1 2.x x x2 1 x2 1 1 2 1 2 . dx . dx 2 4 2 4 2 1 2.x x 2 1 2.x x 1 1 1 1 1 2 1 2 x2 x2 . 1 dx . 1 dx 2 2 x2 x2 2 2 x2 x2 1 1 dx dx 1 2 1 2 x x = . dx . dx 2 2 2 1 x 2 x 1 2 2 2 2 x x 1 2.x 2 x 4 2.x 2 x 4 dx Jb dx 2 2 4 2 2 4 2 2.x . 1 2.x x 2 2.x . 1 2.x x x2 dx dx dx 4 2 2 2 4 2. 1 2.x x 2 2. 1 2.x x 2 2.x x2 2 1 1 1 1 . dx .K b 3 2 4 3 2.x 2 2 1 2.x x 2.x 2 2 15
- 1 2 2 2 2 x 1 . x 1 x 1 x2 2 x2 1 1 2 2 Kb dx dx dx 2 4 2 4 2 4 1 2.x x 1 2.x x 1 2.x x 1 2 2 1 2 2 1 2 2 1 2 2 2 x 1 . x 1 . x 1 x 1 . x 1 2 2 2 2 dx dx 2 4 2 4 1 2.x x 1 2.x x x2 1 x2 1 1 2 1 2 . dx . dx 2 1 2.x 2 x 4 2 1 2.x 2 x 4 1 1 1 1 1 2 1 2 x2 x2 . 1 dx . 1 dx 2 2 x2 2 x2 2 x2 x2 1 1 d x d x 1 2 1 2 x x = . dx . dx 2 2 2 1 x 2 2 2 x 1 2 2 x x dx n ¥ * 10/ I 1 x 2n wn z z r.ei w p.ei p n .ein r.ei p n r va n k2 k Z 2k i n r.e n , Vay can bac n cua z là n so phuc : w k k 0, 1, 2, 3...n 1 With n r là can thuc duong duy nhat 2k 1 2k 1 2k i i i 2n 2n 2n 1 x 2n 0 x 2n 1 2n e i e e e 2k 2k 2k 2k x k cos i.sin x k cos i.sin 2n 2n 2n 2n n 2n x xk x xk With k :1..n thay k tu 1 den n 1 x k 1 n A Bk 1 k Ta tim bieu thuc phan tich duoi dang sau : 1 x 2n k 1 x x k x x k x 2n 1 x 2n 1 n 1 Ak . Bk . x xk x xk k 1 De tinh A k và Bk voi k :1..n, ta cho x x k và x x k , khi do : x 2n 1 0 2n.x 2n 1 ' lim dang , dùng LHospital k x xk x x k 0 x 2n 1 do x k là ngiem cua x 2n 1 lim 0 x xk x x k 1 1 Ak , Bk voi k :1..n 2n 1 2n 1 2n x k 2n.x k Thế các hệ số vừa tìm được vào dạng phân tích, ta có: 16
- Bk n A k x x k Bk x x k n A 1 k x xk x xk 2n x x k x x k k 1 1 x k 1 x A k Bk A k .x k Bk .x k n 2k x 2 2x.cos k 1 1 17 2n
- x xk 1 1 k x 2n 1 2n 1 2n 1 2n 1 2n.x k 2n.x k 2n x k 2n x k n 1 1 x 2n k 1 2k x 2 2x.cos 1 2n 2k 1 2n 1 1 2k 1 x .cos 2k 1 n .cos x.cos 1 n n 2n n 2n 2k 2k k 1 2 x 2 2x.cos k 1 1 n. x 2x.cos 1 2n 2n ei1 .ei2 cos 1 i sin 1 cos 2 i sin 2 cos 1 cos 2 sin 1 sin 2 i sin 1 cos 2 cos 1 sin 2 cos 1 2 isin 1 2 ei 1 2 z1.z 2 r1.r2 .ei 1 2 z1 r1 ei1 .e i2 r1 ei1 .e i2 r1 i 1 2 1 1 z 1 e i . i i . .e i0 z 2 r1 e r1 r1 z r 2 .e 2 e i n n n n in ein cos i sin cos n i sin n z r .e Neu r 1 e 2n 1 2k 2n 1 2k 2n 1 xk cos i.sin 2n 2n 1 2n 2k 1 2n 2k 1 2n 1 x k1 2n cos i.sin 2n 2n xk 2n 1 2k 2n 1 2k cos i.sin 2n 2n 2n 1 2k 2n 1 2k 2n 1 xk cos i.sin 2n 2n 1 2n 2k 1 2n 2k 1 1 2n xk cos i.sin 2n 1 2n 2n xk 2n 1 2k 2n 1 2k cos i.sin 2n 2n 2n 1 2k 1 1 2n 1 2n 1 2 cos 2n xk xk 1 1 1 2n 1 2k 2n 2k 2k 2n 1 2n 1 cos cos x 2 k 2n 2n 2n xk 2k 2k 2k cos 2k .cos sin 2k .sin cos 2n 2n 2n cos 2k 1, sin 2k 0 2k 2k 2k i. cos i.sin 2n xk e 2n 2n 2n 1 2k x 2n 1 2n 1 2k 2n 1 2k i. k cos i.sin 2n 2n 2n e 2k 2k i. i. 2n 2n i 2k e .e 1 1 1 i 2k e 2n 1 2k 2 n 1 2k 2k 2n 2k 2k i. i. i i e 2n 2n 2n 2n 2n e .e e e cos 1 2k i.sin 1 2k cos 2k i.sin 2k 1 0 i. e .ei. cos i.sin cos i.sin cos 2 i 2 .sin 2 cos 2 sin 2 1 18
- 2k 2k 2k i. cos i.sin 2n xk e 2n 2n 2n 1 2k 2n 1 2n 1 2k 2n 1 2k xk i. cos i.sin 2n 2n 2n e 2n 1 2k 2k i. 2k 2n 1 2k 2n 2k i. 2n i i 2n i 2k e .e 2n 2n 2n e e e 2n 1 2k 2n 1 2k i. i. 2n 2n e .e 2n 1 2k 2n 1 2k i. i. 2n 2n cos 2k i.sin 2k 1 e .e 1 1 xk xk xk xk 1 1 2 2n 1 1 x 2n 1 2n 1 2n 1 2 xk xk xk k n Do tổng xích ma f x;k này hữu hạn nên ta có thể đem dấu nguyên hàm dx vào trong dấu k 1 xích ma và được: 2k 1 2k 1 x.cos 1 x.cos 1 n n dx 2n 2n dx dx I 2n k 1 n. x 2 2x.cos 2k 1 2k 1 x k 1 n. x 2 2x.cos 1 2n 2n 2k 2k 2k cos 2 cos2 x.cos 1 n 2n 2n 2n dx 2k k 1 n. x 2 2x.cos 1 2n 2k 2k cos 2x 2cos n 2n . 2n dx 2k 2n x 2 2x.cos k 1 1 2n 2 2k sin dx 2n . 2 n 2k 2k sin 2 x cos 2n 2n ' 2k 2k 2 x 2 x.cos 1 dx 2x 2cos 2k 2n 2n dx ln x 2 2x.cos I1 1 2k 2k 2n x 2 2x.cos x 2 2x.cos 1 1 2n 2n 2k x cos dx 1 2n .arctg I2 2 2k 2k 2k 2 2k sin sin x cos sin 2n 2n 2n 2n 2k cos n dx 2n .ln x 2 2x.cos 2k 1 I 2n 2n 2n 1 x k 1 2k 2k sin 2 x cos 2n 1 2n . .arctg 2k 2k n sin sin 2n 2n 19
- dx 11/ I xn an 2 2k i dx n x n a n 0 x n a n .1 a.n e 2 i a.e I xn an 2k i 2k 2k n a.e x k a cos i.sin n n n n With k :1..n thay k tu 1 den n 1 x x x k k 1 wn z z r.ei w p.ei p n .ein r.e p n r va n k2 k Z i 2k i n n r.e Vay can bac n cua z là n so phuc : w k , k 0, 1, 2, 3...n 1 With n r là can thuc duong duy nhat xn an n n A 1 k Ta tim bieu thuc phan tich duoi dang sau : n 1 A k . x x n k 1 x x k x a k 1 k De tinh A k và Bk voi k :1..n, ta cho x x k khi do : xn a n 0 1 n.x n 1 ' lim dang , dùng LHospital Ak voi k :1..n k n.x n 1 x xk x x k 0 k The cac he so vua tim dc vào dang phan tích, ta có : n n A k 1 1 2k 2k n 1 x k a cos i.sin n x x k k 1 n.x k x x k n n n x a k 1 1 n 2k 1 n 2k 1 x k1 n a1 n cos i.sin x k n 1 n n n 1 2k n 1 2k a1 n cos i.sin n n 2k n 1 n2k 2k cos cos n n n 2k 2k 2k cos 2k 1, sin 2k 0 cos 2k .cos sin 2k .sin cos n n n 2k n 1 n2k 2k 2k 2k 2k sin 2k .cos cos 2k .sin sin sin sin n n n n n n 1 2k 2k a1 n cos i.sin n x k n 1 n 2k 2k 1 n a cos i.sin n n n 1 1 n n n 1 n.x x x k1 n 2k 2k x a k 1 k k n x a cos i.sin n n 2 k 2k cos i.sin n a1 n n n dx dx n n k 1 2k 2k x a x a cos i.sin n n a1 n n 2k 2k 2k 2k cos i.sin .ln x a cos i.sin n n n k 1 n n 20
![](images/graphics/blank.gif)
Thêm tài liệu vào bộ sưu tập có sẵn:
![](images/icons/closefanbox.gif)
Báo xấu
![](images/icons/closefanbox.gif)
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
![](https://tailieu.vn/static/b2013az/templates/version1/default/js/fancybox2/source/ajax_loader.gif)