Lecture Strength of Materials I: Chapter 6 - PhD. Tran Minh Tu
lượt xem 1
download
Lecture Strength of Materials I - Chapter 6: Torsion. The following will be discussed in this chapter: Introduction, torsional loads on circular shafts, strength condition and stiffness condition, statically indeterminate problem, strain energy, examples.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Lecture Strength of Materials I: Chapter 6 - PhD. Tran Minh Tu
- STRENGTH OF MATERIALS 1/10/2013 TRAN MINH TU - University of Civil Engineering, 1 Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, Vietnam
- CHAPTER 6 TORSION 1/10/2013
- Contents 6.1. Introduction 6.2. Torsional Loads on Circular Shafts 6.3. Strength Condition and stiffness condition 6.4. Statically Indeterminate Problem 6.5. Strain Energy 6.6. Examples Home’s works 1/10/2013 3
- 6.1. Introduction 1/10/2013 4
- 6.1. Introduction 1/10/2013 5
- 6.1. Introduction Torsion members – the slender members subjected to torsional loading, that is loaded by couple that produce twisting of the member about its axis Examples – A torsional moment (torque) is applied to the lug-wrench shaft, the shaft transmits the torque to the generator, the drive shaft of an automobile... • Torsional Loads on Circular Shafts: the torsional moment or couple A F x Q2 B C Q1 t z 2 T t T 1 1 2 y 1/10/2013 6
- 6.1. Introduction Internal torsional moment diagram • Using method of section • Sign convention of Mz - Positive: clockwise - Negative: counterclockwise Mz > 0 M z 0 Mz = y y z z x x 1/10/2013 7
- 6.2. Torsion of Circular Shafts 6.2.1. Simplifying assumptions 1/10/2013 8
- 6.2. Torsion of Circular Shafts => In the cross-section, only shear stress exists 6.2.2. Compatibility • Consider the portion of the shaft shown in the figure • CD – before deformation • CD’ – after deformation - From the geometry DD ' d dz d => The Shear strain: dz - d – the angle of twist - Following Hooke’s law: d G G 1/10/2013 dz 9
- 6.2. Torsion of Circular Shafts 6.2.3. Equilibrium d 2 d M z dA G dA G Ip A dz A dz d M z – the rate of twist dz GI p 6.2.3. Torsion formulas – Shearing stress Mz – internal torsional moment Mz Ip – polar moment of inertia Ip – radial position 1/10/2013 10
- 6.2. Torsion of Circular Shafts - Maximum shearing stress Mz Mz max R Ip Wp - Wp - Section modulus of torsion – Angle of twist c a b O A B L A L M z dz M dz rad From 6.2.3: AB z 1/10/2013 B GI p 0 GI p 11
- 6.2. Torsion of Circular Shafts M zL Mz const AB GI p GI p – Multiply torques GIp – stiffness of torsional shaft If the shaft is subjected to several different torques or cross-sectional area, or shear modulus changes abruptly from one region of the shaft to the next. Mz const GI p i n Mz AB li i 1 GI p i 1/10/2013 12
- 6.2. Torsion of Circular Shafts 1/10/2013 13
- 6.3. Strength Condition – Stiffness condition Mz Strength condition: max Wp 0 - Determine experimentally 0 n - Third strength hypothesis 3 2 - Fourth strength hypothesis 4 3 Stiffness condition: Mz max rad / m GI p max 1/10/2013 14
- 6.3. Strength Condition – Stiffness condition Three main problems: Mz For a circular shaft: max 3 max Mz 4 0.2D 0.1GD 1. Investigating the strength condition, (stiffness condition) Mz max 3 ??? 0.2D 2. Determine the diameter of circular cross-section Mz D 3 0.2 3. Determine the maximum torque M z 0.2 D3 1/10/2013 15
- 6.4. Statically Indeterminate Problem • Assume that the reactions at the fixed ends MA, MD are shown in the figure. MA M MD • Equilibrium: MA + MD = M (1) 2d d A B D • Compatibility condition: AD = 0 a 2a (2) CD Mz MD AB BD AD AB BD M a M 2a z z M BD z MD AB BD D GI GI p p M AB z MD M z AD MD M a M D 2a 0 M/33 G 0,1 2d G 0,1 d 4 4 Mz 1 32 MD M; MA M 33 33 32M/33 1/10/2013 16
- 6.5. Strain Energy • For a shaft subjected to a torsional load, 2 xy 2 2 T U dV 2 dV 2G 2GJ • Setting dV = dA dx, T 2 2 L L T 2 2 U dA dx 2 dA dx 2GJ 2 2GJ A 0A 0 T xy L T2 J dx 2GJ 0 • In the case of a uniform shaft, T 2L U 2GJ 1/10/2013 17
- 6.6. Example Problem 1 • A Circular shaft made from two segments, each having diameter of D and 2D. The Shaft is subjected to the torques shown in the figure. M 3M 1. Draw the internal torsional 2D D moment diagram B C D 2. Determine the maximum 2a a shearing stress 3. Determine the angle of twist of the end D with respect to B With M=5kNm; a=1m; D=10cm; G=8.103 kN/cm2 1/10/2013 18
- 6.6. Example Problem 1 M 3M 1. Internal torsional moment diagram 2D D B C D Segment CD 0 z1 a 2a a 3M M CD z 3M 15kNm MzCD Segment BC 0 z2 2a M z1 3M M BC z 2M 10kNm MzBC z2 a 15 10 Mz kNm 1/10/2013 19
- 6.6. Example Problem 1 M 3M 2. Maximum shearing stress 2D D B C M zCD 15 102 D max 7,5(kN / cm2 ) CD 0,2 D 3 0,2 10 3 2a a M zBC 10 102 max 0,625(kN / cm2 ) 15 0, 2 2 D 0, 2 20 BC 3 3 10 Mz kNm max 7,5(kN / cm2 ) 3. Angle of twist of end D M zCD a M zBC 2a D BC CD D CD GI p GI pBC 15 102 102 10 102 2 102 D 0,02(rad ) 8 10 0,110 8 10 0,1 20 3 4 3 4 1/10/2013 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Lecture Strength of Materials I: Chapter 5 - PhD. Tran Minh Tu
21 p | 23 | 2
-
Lecture Strength of Materials I: Chapter 7 - PhD. Tran Minh Tu
58 p | 43 | 2
-
Lecture Strength of Materials I: Chapter 1 - PhD. Tran Minh Tu
63 p | 50 | 1
-
Lecture Strength of Materials I: Chapter 2 - PhD. Tran Minh Tu
41 p | 30 | 1
-
Lecture Strength of Materials I: Chapter 3 - PhD. Tran Minh Tu
43 p | 32 | 1
-
Lecture Strength of Materials I: Chapter 4 - PhD. Tran Minh Tu
33 p | 26 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn