Lecture Strength of Materials I: Chapter 4 - PhD. Tran Minh Tu
lượt xem 1
download
Chapter 4 - State of stress and strength hypothese. The following will be discussed in this chapter: State of stress at a point, plane stress, mohr’s circle, special cases of plane stress, stress – strain relations, strength hypotheses.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Lecture Strength of Materials I: Chapter 4 - PhD. Tran Minh Tu
- STRENGTH OF MATERIALS 1/10/2013 TRAN MINH TU - University of Civil Engineering, 1 Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, Vietnam
- CHAPTER 4 State of Stress and Strength Hypothese 1/10/2013
- Contents 4.1. State of stress at a point 4.2. Plane Stress 4.3. Mohr’s Circle 4.4. Special cases of plane stress 4.5. Stress – Strain relations 4.6. Strength Hypotheses 1/10/2013 3
- 4.1. State of stress at a point • External loads applied to the body => The body is deformed =>The stress is occurred • At a point K on the arbitrary section, there n are 2 types of stress: normal stress s and shearing stress t y K • The state of stress at a point K is a set of all stresses components acting on all sections, which go through this point z x • The most general state of stress at a point may be represented by 6 components, s x ,s y ,s z normal stresses t xy , t yz , t zx shearing stresses (Note: t xy t yx , t yz t zy , t zx t xz ) 1/10/2013 4
- 4.1. State of stress at a point • Principal planes: no shear stress acts on • Principal directions: the direction of the principal planes • Principal stresses: the normal stress act on the principal plane • There are three principal planes , which are perpendicular to each other and go through a point • Three principal stresses: s1, s2, s3 with: s1 ≥ s2 ≥ s3 • Types of state of stress: - Simple state of stress: 2 of 3 principal stresses equal to zeros - Plane state of stress: 1 of 3 principal stresses equal to zeros - General state of stress: all 3 principal stresses differ from zeros 1/10/2013 5
- 4.2. Plane Stress • Plane Stress – the state of stress in which two faces of the cubic element are free of stress. For the illustrated example, the state of stress is defined by s x , s y , t xy and s z t zx t zy 0. • State of plane stress occurs in a thin plate subjected to the forces acting in the mid-plane of the plate. y sy O sy tyx x tyx y sx sx txy txy x 6 z
- 4.2. Plane Stress Sign Convention: • Normal Stress: positive: tension; negative: compression • Shear Stress: positive: the direction associated with its subscripts are plus-plus or minus-minus; negative: the directions are plus-minus or minus-plus 4.2.1. Complementary shear stresses: • The shear stresses with the same subscripts in two orthogonal planes (e.g. txy and tyx) are equal y 1/10/2013 7
- 4.2. Plane Stress sy 4.2.2. Stresses on Inclined Planes: u Sign Convention: >0 - counterclockwise; sx txy su >0 – pull out u t uv - clockwise O x su Fu 0 v s u A s x A cos2 t xy A cos sin y sx s y A sin 2 t yx A sin cos 0 txy tuv tyx F v 0 sy τuv A - τ xy Acos 2 α - σ x Acosαsinα Asin A Acos +τ yx Asin2 α +σ y Asinαcosα = 0 1/10/2013 8
- 4.2. Plane Stress 4.2.2. Stresses on Inclined Planes: su u s x s y s x s y su cos 2 t xy sin 2 txy 2 2 x s x s y tuv t uv sin 2 t xy cos 2 sx sy 2 y v tyx - > 0: counterclockwise from the x axis to u axis sy 1/10/2013 9
- 4.2. Plane Stress 4.2.3. Principal stresses are maximum and minimum stresses : By taking the derivative of su to and setting it equal to zero: ds u 2t xy 0 => tg2 p =- d sx sy p p1, p 2 p 90 0 sx s y s x s y 2 s max, min s 1,2(3) t 2 2 2 xy 1/10/2013 10
- 4.2. Plane Stress 4.2.4. Maximum in-plane shear stresses dt sx sy 0 => tg2 s = => s = p 450 d 2t xy => An element subjected to maximum shear stresses will be 450 from the position of an element that is subjected to the principal stress s x s y 2 t max,min t 2 2 xy 4.2.5. The first invariant of plane stress The sum of the normal stresses has the same value in each coordinate system s x s y s u s v const 1/10/2013 11
- 4.3. Mohr’s Circle Using the transformation relations: sx s y sx s y ( su - )2 ( cos 2 t xy sin 2 )2 2 2 sx s y ( tuv )2 ( sin 2 t xy cos 2 )2 2 sx s y sx s y 2 2 s u - t 2 uv t 2 xy Mohr’ Circle 2 2 sx s y sx s y 2 Center: I ,0 Radius: R t xy 2 2 2 1/10/2013 12
- 4.3. Mohr’s Circle Plane Stress t uv sy tyx t u t K max u uv sx M sx t xy txy txy R tyx 02 sy O ` s u B I s u A 01 sx s y I ,0 s2 u1 2 sy sx s y 2 R t xy 2 2 sx t min Điểm cực M s y , t xy u2 s1 1/10/2013 13
- 4.4. Special Cases of Plane Stress 4.4.1. Uniaxial tension 4.4.2. Pure shear 1/10/2013 14
- 4.4. Special Cases of Plane Stress 4.4.3. Special plane stress t t t s I s s s t t smin smax t s s 2 s1 s 3 s 2 s max,min s1,3 t 2 t max t2 2 2 2 2 1/10/2013 15
- 4.5. Stress – Strain relations 1. Uniaxial stress y sx sx x y s x z s x E E E 2. Pure shear z x t xy y xy yz zx 0 G txy 1/10/2013 z x16
- 4.5. Stress – Strain relations 3. General state of stress - Assumption: The normal strain sy causes only the normal stress. The Shear strain causes only the shear y stress sx - The Principle of superposition sz txy sx sy sz x E E E z x 1 E s x s y sz 1/10/2013 17
- 4.5. Stress – Strain relations a. Normal stress – normal strain relation Generalized Hooke’s law x s x s y s z 1 1 s 1 s 2 s 3 1 E 1 E y s y s x s z E 2 1 s 2 s 3 s 1 E z s z s x s y 1 3 s 3 s 2 s 1 1 E E b. Shear stress – shear strain relation t xy t xz t yz xy xz yz G G G E with E, , G are Young modulus, Poisson ratio, G shear modulus, which the relation among them: 2 1 1/10/2013 18
- 4.5. Stress – Strain relations 1 1 - Plane stress x s x s y 1 s 1 s 2 E E t xy xy 1 y s y s x 1 2 s 2 s 1 G E E 4. Normal stress – unit volume change relation V a1a2a3 V1 a1 ( 1 1 )a2 ( 1 2 )a3 ( 1 3 ) V1 V 1 2 3 V 1 2 1 2 (s1 s 2 s 3 ) (s x s y s z ) E E 1/10/2013 19
- 4.5. Stress – Strain relations 5. Strain energy s1 1 1 u us ut s t 2 2 s2 Principal element: t = 0 => s3 1 1 1 u s 1 1 s 2 2 s 3 3 2 2 2 1 2E s 12 s 22 s 32 2 s 1s 2 s 3s 2 s 1s 3 1/10/2013 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Lecture Strength of Materials I: Chapter 5 - PhD. Tran Minh Tu
21 p | 23 | 2
-
Lecture Strength of Materials I: Chapter 7 - PhD. Tran Minh Tu
58 p | 43 | 2
-
Lecture Strength of Materials I: Chapter 1 - PhD. Tran Minh Tu
63 p | 50 | 1
-
Lecture Strength of Materials I: Chapter 2 - PhD. Tran Minh Tu
41 p | 30 | 1
-
Lecture Strength of Materials I: Chapter 3 - PhD. Tran Minh Tu
43 p | 32 | 1
-
Lecture Strength of Materials I: Chapter 6 - PhD. Tran Minh Tu
28 p | 18 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn