intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn: TỔNG HỢP, NGHIÊN CỨU PHỨC CHẤT CỦA MỘT SỐ NGUYÊN TỐ ĐẤT HIẾM (Sm, Eu, Tm, Yb) VỚI L – TYROSIN BẰNG CÁC PHƯƠNG PHÁP HÓA LÍ

Chia sẻ: Qsczaxewd Qsczaxewd | Ngày: | Loại File: PDF | Số trang:60

134
lượt xem
31
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Hóa học phức chất của các nguyên tố đất hiếm (NTĐH) là lĩnh vực khoa học đã và đang phát triển mạnh mẽ. Phức chất của NTĐH ngày càng đƣợc ứng dụng rộng rãi trong nhiều lĩnh vực nhƣ: nông nghiệp, y dƣợc, luyện kim... Đã có nhiều công trình, với nhiều phƣơng pháp khác nhau nghiên cứu sự tạo phức của NTĐH với amino axit. Kết quả nghiên cứu phức chất của NTĐH với amino axit rất phong phú. Với phức dung dịch đã khảo sát tỉ lệ các cấu tử tạo phức là1:1, 1:2, 1:3 và phức rắn chủ yếu đƣợc tổng hợp theo...

Chủ đề:
Lưu

Nội dung Text: Luận văn: TỔNG HỢP, NGHIÊN CỨU PHỨC CHẤT CỦA MỘT SỐ NGUYÊN TỐ ĐẤT HIẾM (Sm, Eu, Tm, Yb) VỚI L – TYROSIN BẰNG CÁC PHƯƠNG PHÁP HÓA LÍ

  1. ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM ============== NGUYỄN THỊ HIẾU TỔNG HỢP, NGHIÊN CỨU PHỨC CHẤT CỦA MỘT SỐ NGUYÊN TỐ ĐẤT HIẾM (Sm, Eu, Tm, Yb) VỚI L – TYROSIN BẰNG CÁC PHƢƠNG PHÁP HÓA LÍ LUẬN VĂN THẠC SĨ KHOA HỌC HÓA HỌC Thái Nguyên, tháng 9 năm 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  2. ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM ============== NGUYỄN THỊ HIẾU TỔNG HỢP, NGHIÊN CỨU PHỨC CHẤT CỦA MỘT SỐ NGUYÊN TỐ ĐẤT HIẾM (Sm, Eu, Tm, Yb) VỚI L – TYROSIN BẰNG CÁC PHƢƠNG PHÁP HÓA LÍ Chuyên ngành: HÓA PHÂN TÍCH Mã số: 60.44.29 LUẬN VĂN THẠC SĨ KHOA HỌC HÓA HỌC Hƣớng dẫn khoa học: PGS.TS Lê Hữu Thiềng Thái Nguyên, tháng 9 năm 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  3. LỜI CẢM ƠN Em xin bày tỏ lòng biết ơn sâu s ắc đến thầy giáo PGS.TS Lê Hữu Thiềng đã giao đề tài và tận tình hướng dẫn, giúp đỡ em trong suốt quá trình thực hiện đề tài. Em xin chân thành cảm ơn các thầy cô giáo trong khoa Hóa Học - Đại học Sư phạm Thái Nguyên trong suốt quá trình học tập và nghiên cứu. Em xin trân trọng cảm ơn Ban giám hiệu, khoa Sau Đại học Trường Đại học Sư phạm - Đại học Thái Nguyên đã tạo điều kiện thận lợi để em hoàn thành luận văn. Xin chân thành cảm ơn gia đình, bạn bè đã động viên, giúp đỡ tôi hoàn thành nhiệm vụ học tập và nghiên cứu của mình. Thái Nguyên, tháng 9 năm 2009 Nguyễn Thị Hiếu Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  4. MỤC LỤC CHƢƠNG 1 : TỔNG QUAN TÀI LIỆU…………………………………........ ......2 1.1 Giới thiệu về các nguyên tố đất hiếm và samari, europi, tuli, ytecbi……..….2 1.1.1 Đặc điểm cấu tạo và tính chất chung của các nguyên tố đất hiếm……….2 1.1.1.1 Cấu tạo của các nguyên tố đất hiếm…………………………………2 1.1.1.2 Tính chất hóa học đặc trƣng của các nguyên tố đất hiếm…………...4 1.1.2 Giới thiệu về nguyên tố samari, europi, tuli, ytecbi..…………… ....…....6 1.1.2.1 Nguyên tố samari, europi, tuli, yt ecbi..…………………………….6 1.1.2.2 Sơ lƣợc tính chất hoá học của samari, europi, tuli, ytecbi…..….….6 1.1.2.3 Sơ lƣợc tính chất các hợp chất của samari, europi, tuli, ytecbi… …6 1.2 Giới thiệu về L-tyrosin.................................. ..................................................8 1.2.1 Sơ lƣợc về L-tyrosin…………………………….................………... ......8 1.2.2 Sơ lƣợc về hoạt tính của L-tyrosin.……….......................................... ....9 1.3. Khả năng tạo phức của các NTĐH với amino axit.........................................9 1.3.1 Khả năng tạo phức của các nguyên tố đất hiếm…………………….... ....9 1.3.2 Khả năng tạo phức của NTĐH với amino axit L -tyrosin……............. ...11 1.4. Một số phƣơng pháp nghiên cứu phức chất…………...…........................ ...13 1.4.1 Phƣơng pháp trắc quang UV -VIS…………………………………… ….13 1.4.2 Phƣơng pháp phổ hấp thụ hồng ngoại…………………………………...1 3 1.4.3 Phƣơng pháp phân tích nhiệt…………………………………………….16 1.4.4 Phƣơng pháp kính hiển vi điện tử quét (SEM)…………………… ...…..17 CHƢƠNG 2: THỰC NGHIỆM.............................................................................18 2.1 Hóa chất và thiết bị…………............................................................... .........18 2.1.1 Hóa chất………………………………………………………..............18 2.1.1.1 Dung dịch đệm pH = 4,2 (CH3COONH4, CH3COOH)……….......18 2.1.1.2 Dung dịch asenazo (III) 0,1%..........................................................18 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  5. 2.1.1.3 Dung dịch DTPA 10 -3M………………………..…................... ......18 2.1.1.4 Dung dịch SmCl3, EuCl3, TmCl3, YbCl3 10-2M……..................... ..18 2.1.1.5 Dung dịch L-tyrosin 10-3M……………………....................… ..….18 2.1.1.6 Dung dịch LiOH 0,1M……………………….……............... ..........19 2.1.2 Thiết bị.................……………………………………………….….....19 2.2 Khảo sát tỉ lệ các cấu tử tạo phức trong dung dịch........ ...............................19 2.3 Tổng hợp phức chất r ắn ……………….……..……………….........…...…21 2.3.1 Phức chất tỉ lệ Ln3+:Tyr = 1:2 ..……………………....................... .....21 2.3.2 Phức chất tỉ lệ Ln3+: Tyr = 1:3 ……….…….......................................21 2.3.3 Xác định thành phần củ a phức chất .……….……….......... ................22 2.3.3.1 Xác định hàm lƣợng (%) đất hiếm………………………........…22 2.3.3.2 Xác định hàm lƣợng (%) tổng nitơ…………..…………….....…23 2.4 Nghiên cứu các phức chất bằng phƣơng pháp phân tích nhiệt…….…........24 2.4.1 Phức chất tỉ lệ Ln3+:Tyr = 1:2………………………….......................24 2.4.2 Phức chất tỉ lệ Ln3+ :Tyr = 1:3….…………….....................................29 2.5 Nghiên cứu các phức chất bằng phƣơng pháp phổ hấp thụ h ồng ngoại…...32 2.5.1 Phức chất tỉ lệ Ln3+:Tyr = 1:2………...................................................3 2 2.5.2 Phức chất tỉ lệ Ln3+:Tyr = 1:3……………...........................................3 7 2.6 Nghiên cứu các phức chất bằng phƣơn g pháp kính hiển vi điện tử quét (SEM)…………………………………………………….…………………….. 39 Kết luận.............................................................................................................4 2 Tài liệu tham khảo........................... ..................................................................43 Phụ lục.....................................................................................................46 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  6. DANH MỤC CÁC HÌNH VÀ BẢNG BIỂU Hình 1: Sự phụ thuộc mật độ quang của L-tyrosin khi thêm Ln3+ Hình 2: Giản đồ phân tích nhiệt của L-tyrosin Hình 3: Giản đồ phân tích nhiệt của phức Sm(Tyr)2 Cl3.2H2O Hình 4: Giản đồ phân tích nhiệt của phức Eu(Tyr)2Cl3.2H2O Hình 5: Giản đồ phân tích nhiệt của phức Tm(Tyr)3 Cl3.2H2O Hình 6: Phổ hấp thụ hồng ngoại của L-tyrosin Hình 7: Phổ hấp thụ hồng ngoại của phức Sm(Tyr)2 Cl3.2H2O Hình 8: Phổ hấp thụ hồng ngoại của phức Eu(Tyr)2Cl3.2H2O Hình 9: Phổ hấp thụ hồng ngoại của phức Tm(Tyr)3 Cl3.2H2O Hình 10: Ảnh hiển vi điện tử quét (SEM) của L-tyrosin Hình 11: Ảnh hiển vi điện tử quét (SEM) của phức tỉ lệ Ln 3+:Tyr = 1:2 Hình 12: Ảnh hiển vi điện tử quét (SEM) của phức tỉ lệ Ln 3+:Tyr = 1:3 Phụ lục 1: Giản đồ phân tích nhiệt của phức Tm(Tyr) 2Cl3.H2O Phụ lục 2: Giản đồ phân tích nhiệt của phức Yb(Tyr) 2Cl3.2H2O Phụ lục 3: Giản đồ phân tích nhiệt của phức Sm(Tyr) 3Cl3 Phụ lục 4: Giản đồ phân tích nhiệt của phức Eu(Tyr) 3Cl3 Phụ lục 5: Phổ hấp thụ hồng ngoại của phức Tm(Tyr) 2Cl3.H2O Phụ lục 6: Phổ hấp thụ hồng ngoại của phức Yb(Tyr) 2Cl3.2H2O Phụ lục 7: Phổ hấp thụ hồng ngoại của phức Sm(Tyr)3Cl3 Phụ lục 8: Phổ hấp thụ hồng ngoại của phức Eu(Tyr) 3Cl3 Bảng 1: Mật độ quang của các dung dịch Ln3+ - L-tyrosin ở bƣớc sóng 275 nm Bảng 2: Kết quả phân tích thành phần (%) của các nguyên tố (Ln, N) của phức chất Bảng 3: Kết quả giản đồ nhiệt của phức chất (tỉ lệ Ln 3+:Tyr = 1:2) Bảng 4: Kết quả giản đồ nhiệt của phức chất (tỉ lệ Ln 3+:Tyr = 1:3) Bảng 5: Các tần số hấp thụ đặc trƣng (cm-1) của L-tyrosin và phức chất (tỉ lệ Ln3+:Tyr = 1:2) Bảng 6: Các tần số hấp thụ đặ c trƣng (cm-1) của L-tyrosin và phức chất (tỉ lệ Ln3+:Tyr = 1:3) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  7. 1 MỞ ĐẦU Hóa học phức chất của các nguyên tố đất hiếm (NTĐH) là lĩnh vực khoa học đã và đang phát triển mạnh mẽ. Phức chất của NTĐH ngày càng đƣợc ứng dụng rộng rãi trong nhiều lĩnh vực nhƣ: n ông nghiệp, y dƣợc, luyện kim... Đã có nhiều công trình, với nhiều phƣơng pháp khác nhau nghiên cứu sự tạo phức của NTĐH với amino axit. Kết quả nghiên cứu phức chất của NTĐH với amino axit rất phong phú. Với phức dung dịch đã khảo sát tỉ lệ các cấu tử t ạo phức là1:1, 1:2, 1:3 và phức rắn chủ yếu đƣợc tổng hợp theo tỉ lệ 1:3. Tuy nhiên nghiên cứu về phức của NTĐH với L-tyrosin là ít, đặc biệt phức rắn tỉ lệ mol các cấu tử là 1:2. Trên cơ sở đó chúng tôi thực hiện đề tài : “Tổng hợp, nghiên cứu phức chất của một số nguyên tố đất hiếm (Sm, Eu, Tm, Yb) với L -tyrosin bằng các phương pháp hóa lí”. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  8. 2 CHƢƠNG 1. TỔNG QUAN TÀI LIỆU 1.1 Giới thiệu về các nguyên tố đất hiế m và samari, europi, tuli, ytecbi. 1.1.1 Đặc điểm cấu tạo và tính chất chung của các nguyên tố đất hiếm 1.1.1.1 Cấu tạo của các nguyên tố đất hiếm Các nguyên tố đất hiếm (NTĐH) bao gồm: Sc, Y, La và các nguyên tố họ lantanit (Ln). Họ lantanit gồm 14 nguyên tố: xeri (Ce), praseodim (Pr), neodim (Nd), prometi (Pm), samari (Sm), europi (Eu), gadolini (Gd) , tecbi (Tb), dysprosi (Dy), honmi (Ho), ecbi (Er), tuli (Tm), ytecti (Yb) và lutexi (Lu). Cấu hình electron chung của nguyên tử các nguyên tố lantanit là: 1s22s22p63s23p63d104s24p64d104fn5s25p65dm6s2 n nhận các giá trị từ 0 ÷ 14 m chỉ nhận giá trị là 0 hoặc 1 Dựa vào cấu tạo và cách điền electron vào ocbitan 4f, các nguyên tố lantanit thƣờng đƣợc chia làm 2 phân nhóm. Phân nhóm Xeri (nhóm đất hiếm nhẹ) gồm Ce, Pr, Nd, Pm, Sm, Eu và Gd. Phân nhóm Ytri (nhóm đất hiếm nặng) gồm Tb, Dy, Ho, Er, Tm, Yb, và Lu. La 4f05d1 Nhóm Xeri Ce Pr Nd Pm Sm Eu Gd 4f2 4f3 4f4 4f5 4f6 4f7 4f75d1 Nhóm Ytri Tb Dy Ho Er Tm Yb Lu 4f9 4f10 4f11 4f12 4f13 4f14 4f145d1 Khi bị kích thích một năng lƣợng nhỏ, một trong các electron 4f (thƣờng là một) nhảy sang phân lớp 5d, các electron 4f còn lại bị các electron 5s 25p6 chắn với tác dụng bên ngoài nên không có ảnh hƣởng quan trọng đến tính chất của đa số Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  9. 3 lantanit. Nhƣ vậy tính chất của lantanit đƣợc quyết định bởi chủ yếu các electron ở phân lớp 5d16s2. Các lantanit giống với nhiều nguyên tố d nhóm IIIB có bán kính nguyên tử và ion tƣơng đƣơng. Sự khác nhau trong cấu trúc nguyên tử ở lớp thứ ba từ ngoài vào ít ảnh hƣởng đến tính chất hóa học của nguyên tố nên các lantanit rất giống nhau. Một số tính chất chung của các NTĐH: - Có màu trắng bạc, khi tiếp xúc với không khí tạo ra các oxit. - Là những kim loại tƣơng đối mềm, độ cứng tăng theo số hiệu nguyên tử. - Các NTĐH có độ dẫn điện cao. - Đi từ trái sang phải trong chu kì bán kính của các ion Ln 3+ giảm đều đặn, điều này đƣợc giải thích bằng sự co lantanit. - Có nhiệt độ nóng chảy và sôi cao. - Phản ứng với nƣớc giải phóng ra hidro, phản ứng xảy ra chậm ở nhiệt độ thƣờng và tăng nhanh khi tăng nhiệt độ. - Phản ứng với H+ (của axit) tạo ra H2 (xảy ra ngay ở nhiệt độ phòng). - Cháy dễ dàng trong không khí. - Là tác nhân khử mạnh. - Nhiều hợp chất của các NTĐH phát huỳnh quang dƣới tác dụng của tia cực tím, hồng ngoại. - Các nguyên tố lantanit phản ứng dễ dàng với hầu hết các nguyên tố phi kim. Chúng thƣờng có số oxi hóa là +3. Ngoài những tính chất đặc biệt giống nhau các lantanit cũng có những tính chất không giống nhau, từ Ce đến Lu một số tính chất biến đổi tuần tự một số tính chất biến đổi tuần hoàn. Sự biến đổi tuần tự các tính chất của c húng đƣợc giải thích bằng sự co lantanit và việc điền electron vào các ocbitan 4f. Sự co lantanit là sự giảm bán kính nguyên tử theo chiều tăng của số thứ tự nguyên tử. Electron hóa trị của lantanit chủ yếu là các electron 5d 16s2 nên số oxi hóa bền và đặc trƣng của chúng là +3. Tuy nhiên một số nguyên tố có hóa trị thay đổi Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  10. 4 nhƣ Ce (4f25d2) ngoài số oxi hóa +3 còn có số oxi hóa đặc trƣng là +4. Đó là kết quả chuyển 2 electron từ ocbitan 4f sang ocbitan 5d. Pr (4f 36s2) có thể có số oxi hóa +4 nhƣng không đặc trƣng bằng Ce. Ngƣợc lại Eu(4f76s2), Yb(4f146s2) ngoài số oxi hóa +3 còn có số oxi hóa +2, Sm(4f66s2), Tm(4f136s2) cũng có thể có số oxi hóa +2 [10]. 1.1.1.2 Tính chất hóa học đặc trưng của các nguyên tố đất hiếm Về mặt hóa học, các lantanit là những kim loại hoạt động mạnh, chỉ kém kim loại kiềm và kiềm thổ. Các nguyên tố phân nhóm xeri hoạt động hơn các nguyên tố phân nhóm ytri. Lantan và các lantanit dƣới dạng kim loại có tính khử mạnh. Ở nhiệt độ cao các lantanit có thể khử đƣợc oxit của nhiều kim loạ i, ví dụ nhƣ sắt, mangan,… Kim loại xeri ở nhiệt độ nóng đỏ có thể khử đƣợc CO, CO 2 về C. Công thức chung các oxit của nguyên tố đất hiếm là Ln 2O3. Tuy nhiên một vài oxit có dạng khác là: CeO2, Tb4O7, Pr6O11,...Oxit Ln2O3 giống với của kim loại kiềm thổ chúng bền với nhiệt và khó nóng chảy. Các oxit đất hiếm là các oxit bazơ điển hình, không tan trong nƣớc nhƣng tác dụng với nƣớc tạo thành các hydroxit và phát nhiệt. Chúng dễ tan trong axit vô cơ tạo thành dung dịch chứa ion [Ln(H 2O)x]3+ (x=8÷9). Riêng CeO2 chỉ tan trong axit đặc nóng. Các đất hiếm hydroxit Ln(OH)3 là kết tủa vô định hình thực tế không tan trong nƣớc, tích số tan của chúng khoảng 10 -20. Độ bền nhiệt của chúng giảm dần từ Ce đến Lu. Hydroxit Ln(OH)3 là những bazơ khá mạnh, tính bazơ nằm giữa Mg(OH)2 và Al(OH)3 và giảm dần từ Ce đến Lu. Chúng tan trong axit, không tan trong dung dịch amoniac bão hòa và dung dịch KOH. Một số hydroxit có thể tan ít trong kiềm nóng chảy tạo thành những hợp chất nhƣ: KNdO 2, NaPr(OH)4… Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  11. 5 Các Ln3+ kết tủa trong khoảng pH từ 6,8÷8,5 riêng Ce(OH)4 kết tủa ở pH thấp từ 0,7 ÷ 3, dựa vào đặc điểm này ngƣời ta có thể tách riêng Ce ra khỏi các NTĐH. Ion Ln3+ có màu sắc biến đổi phụ thuộc vào cấu hình electron 4f. Những electron có cấu hình 4f0, 4f7, 4f14 đều không có màu. Các electron 4f khác có màu khác nhau: La3+ (4f0) Lu3+ (4f14) Không màu Không màu Ce3+ (4f1) Yb3+ (4f13) Không màu Không màu Pr3+ (4f2) Tm3+ (4f12) Lục vàng Xanh lục Nd3+ (4f3) Er3+ (4f11) Tím đỏ Hồng Pm3+ (4f4) Ho3+ (4f10) Hồng Vàng đỏ Sm3+ (4f5) Dy3+ (4f9) Vàng nhạt Vàng Eu3+ (4f6) Tb3+ (4f8) Hồng nhạt Hồng nhạt Gd3+ (4f7) Không màu Muối của lantanit(III): clorua, bromua, iodua, nitrat và sunfat tan trong nƣớc, còn các muối florua, cacbonat, photphat, và oxalat không tan. Các muối Ln(III) bị thủy phân một phần trong dung dịch nƣớc, khả năng đó tăng dần từ Ce đến Lu. Điểm nổi bật của các Ln3+ là dễ tạo muối kép có độ tan khác nhau, vì thế nên ngƣời ta thƣờng dùng muối kép để tách các lantanit. Ở trạng thái rắn cũng nhƣ trong dung dịch các Ln3+ (trừ lantan và lutexi) có phổ hấp thụ ứng với các dải hấp thụ đặc trƣng trong vùng hồng ngoại, khả kiến và tử ngoại [10]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  12. 6 1.1.2 Giới thiệu về nguyên tố samari, europi, tuli, ytecbi. 1.1.2.1 Nguyên tố samari, europi, tuli, ytecbi. Samari, europi là nguyên tố đất hiếm thuộc phân nhóm xeri (phân nhóm nhẹ), tuli, ytecbi là nguyên tố đất hiếm thuộc phân nhóm ytri (phân nhóm nặng) có số thứ tự lần lƣợt là: 62, 63, 69, 70. Số electron của Sm, Eu, Tm, Yb ở phân lớp 4f tăng dần, Eu(4f76s2) có phân lớp 4f7 nửa bão hoà và Yb(4f146s2) có phân lớp 4f 14 bão hoà nên tƣơng đối bền do đó có số oxi hóa +2, +3 bền, Sm(4f 66s2), Tm(4f136s2) có trạng thái oxi hóa là +2, +3. Samari, europi, tuli, ytecbi là kim loại màu sáng (trắng bạc), mềm dẻo, là các nguyên tố đất hiếm kh á hoạt động. Một số thông số vật lí quan trọng của Sm, Eu, Tm, Yb [7]. Các thông số vật lí STT Sm Eu Tm Yb Khối lƣợng mol phân tử(g.mol -1) 1 150,36 151,96 168,93 173,04 Khối lƣợng riêng (g/cm3) 2 7,54 5,24 9,32 6,95 Nhiệt độ nóng chảy (0C) 3 1072 826 1600 824 Nhiệt độ sôi (0C) 4 1670 1430 1720 1320 Bán kính nguyên tử (A0) 5 1,802 2,042 1,746 1,940 Bán kính ion ( A0 ) 6 0,964 0,950 0,899 0,858 Thế điện cực tiêu chuẩn (V) 7 -2,41 -2,40 -2,28 -2,27 1.1.2.2 Sơ lược tính chất hoá học của samari, europi, tuli, ytecbi. Samari, europi, tuli, ytecbi là chất khử mạnh, phản ứng đƣợc với nƣớc nóng, axit loãng, phản ứng ngay lập tức với C, N2, B, Se, Si, P, S và halogen. 1.1.2.3 Sơ lược tính chất các hợp chất của samari, europi, tuli, ytecbi. - Các oxit Ln2O3 (Ln: Sm, Eu, Tm, Yb) là chất màu trắng, có nhiệt độ nóng chảy cao và bền nhiệt. Ln2O3 là oxit bazơ điển hình không tan trong nƣớc nhƣng tan tốt trong các axit vô cơ nhƣ: HCl, H2SO4, HNO3… Các oxít Ln2O3 đƣợc điều Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  13. 7 chế bằng cách nung nóng các hydroxit đất hiếm hoặc muối nitrat, oxalat, cacbonat của đất hiếm ở nhiệt độ cao. - Oxit EuO là chất có màu nâu, khó nóng chảy, khó bay hơi (trong chân không). Thể hiện tính bazơ: phản ứng với nƣớc nguội, axit không phải chất oxi hóa. Bị nƣớc nóng, axit nitric oxi hóa. - Các hydroxit Ln(OH)3 (Ln: Sm, Eu, Tm, Yb) là kết tủa ít tan trong nƣớc, tích số tan khá nhỏ, không bền nhiệt, bị phân h ủy khi đun nóng, ở nhiệt độ 190÷2100C chúng mất một phần nƣớc để tạo thành LnO(OH), còn ở nhiệt độ 800÷9000C thì mất nƣớc hoàn toàn tạo th ành oxit. Ln(OH ) 3 190 LnO(OH )  H 2 O  210 C o 2Ln(OH )3 800 Ln2O3  3H 2O  900 C o - Muối clorua LnCl3 (Ln: Sm, Eu, Tm, Yb) tan tốt trong nƣớc, khi kết tinh từ dung dịch đều ngậm nƣớc LnCl3.6H2O (7H2O), khi đun nóng không tạo thành muối khan mà phân huỷ thành LnOCl không tan trong nƣớc. LnCl 3 có nhiệt độ nóng chảy cao và khi điện phân muối khan nóng chảy trong môi trƣờng không có không khí sẽ thu đƣợc kim loại sạch. LnCl3 .7 H 2O t  LnOCl  o - Muối LnCl2 (Ln: Sm, Eu, Tm, Yb) nóng chảy không phân hủy, ph ân hủy khi đun nóng mạnh, tan nhiều trong nƣớc nguội (không bị thủy phân) và axit clohiđric đặc (khi không có oxi). - Muối nitrat Ln(NO 3)3 (Ln: Sm, Eu, Tm, Yb) tan tốt trong nƣớc, có khả năng tạo muối kép với muối nitrat của kim loại kiềm hoặc amoni theo k iểu Nd(NO3)3.2MNO3 (M: kim loại kiềm hoặc NH4+). - Muối sunfat Ln2(SO4)3 (Ln: Sm, Eu, Tm, Yb) kém tan hơn nhiều so với LnCl3 và Ln(NO3)3, chúng tan nhiều hơn trong nƣớc lạnh, và cũng có khả năng tạo thành sunfat kép với kim loại kiềm dƣới dạng Ln2(SO4)3.M2SO4.nH2O (M: Na, K; n thƣờng là 8). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  14. 8 - Muối oxalat Ln2(C2O4)3 (Ln: Sm, Eu, Tm, Yb) có độ tan trong nƣớc rất nhỏ, tích số tan vào khoảng 10 -25. Các muối oxalat Ln2(C2O4)3 không tan trong nƣớc, axit loãng. Trong nguyên tử của các nguyên tố Sm, Eu, Tm, Yb có c ác obitan d và obitan f còn trống nên nó có khả năng nhận cặp electron của các phối tử. Do đó chúng có khả năng tạo phức với amino axit L -tyrosin. 1.2 Giới thiệu về L-tyrosin 1.2.1 Sơ lược về L-tyrosin L-tyrosin là một trong 20 amino axit dùng để tổng hợp protein. L- tyrosin và p hức chất của chúng đóng vai trò quan trọng trong sinh học, dƣợc phẩm và n ông nghiệp [21]. Công thức phân tử : C9H11NO3 Công thức cấu tạo : COOH HO CH2 CH NH2 Tên quốc tế: α - amino - β - hydroxyphenyl propionic Một số đặc điểm của L-tyrosin Tên viết tắt Tyr Khối lƣợng mol phân tử (g.mol -1) 181,19 Nhiệt độ nóng chảy (oC ) 342 Độ tan (g/100g H2O) 0,04 Điểm đẳng điện pI 5,66 2,20 pKa 9,11 10,07 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  15. 9 Trong dung dịch L-tyrosin tồn tại dƣới dạng ion lƣỡng cực: COO- HO CH2 CH N H3 + Trong môi trƣờng kiềm tồn tại cân bằng sau: COO- + OH- COO- HO CH2 CH HO CH2 CH N H3 + N H2 Trong môi trƣờng axit tồn tại cân bằng sau: COO- + H+ HO CH2 CH HO C H2 CH COOH N H3 + N H3 + L-tyrosin là hợp chất tạp chức, trong phân tử có hai nhóm chức: nhóm amin và nhóm cacboxyl do đó có khả năng tạo phức tốt với kim loại trong đó có NTĐH. Một số phức của L-tyrosin đƣợc ứng dụng trong sinh học: La(Tyr) 3.7H2O, Zn(Tyr)2.2H2O...[18]. 1.2.2 Sơ lược về hoạt tính của L-tyrosin Tyrosin không phải là amino axit thiết yếu cho sự phát triển của con ngƣời, là nhân tố cho sự tổng hợp hoocmon tuyến giáp và chọn neurotransmitters, chẳng hạn nhƣ là dopamine và norepinephrine, có thể coi là thiết yếu của não bộ [18]. Tyrosin đƣợc tổng hợp trong cơ thể con ngƣời từ phenylalanin và trực tiếp tạo nên các hoocmon khác nhau, amin phát sinh trong sinh vật và neurotransmitters. Nó đƣợc sử dụng bằng tuyến giáp và tuyến thƣợng thận để tổng hợp hoocmon tuyến giáp và adrenaline. Tyrosin trao đổi chất để sản xuất chất nhƣ: melanin, chất màu, chất sắc tố tìm đƣợc trong tóc, da. Nhiều tyrosin đƣợc sử dụng tron g phòng thí nghiệm đƣợc chuẩn bị từ cây trồng, củ cải đƣờng, khoai tây đƣờng [21]. 1.3. Khả năng tạo phức của các NTĐH với amino axit 1.3.1 Khả năng tạo phức của các nguyên tố đất hiếm So với các nguyên tố họ d khả năng tạo phức của các NTĐH kém hơn. Do c ác Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  16. 10 electron lớp 4f bị chắn mạnh bởi các electron lớp ngoài cùng và do các ion Ln 3+ có kích thƣớc lớn làm giảm lực hút tĩnh điện giữa chúng với các phối tử. Khả năng tạo phức của các NTĐH chỉ tƣơng đƣơng với các kim loại kiềm thổ. Lực liên kết trong phức chất chủ yếu là do lực hút tĩnh điện. Các ion Ln 3+ có thể tạo với các phối tử vô cơ nhƣ: Cl -, CN-, NH3, NO-3, SO42-… những phức không bền. Trong dung dịch loãng những phức này phân ly hoàn toàn, trong dung dịch đặc chúng kết tinh ở dạng muối kép. Với các phối tử hữu cơ, đặc biệt là các phối tử có dung lƣợng phối trí lớn và điện tích âm lớn, các ion đất hiếm có thể tạo thành những phức rất bền. Ví dụ giá trị lgk (k hằng số bền) của phức chất giữa NTĐH với EDTA vào khoảng 15÷19, với DTPA khoảng 22÷23 [23]. Đặc thù tạo phức của các NTĐH là có số phối trí cao và thay đổi. Trƣớc đây một số tác giả cho rằng số phối trí của ion đất hiếm là 6, nhƣng hiện nay nhiều tài liệu đã chỉ ra rằng số phối trí có thể là 7, 8 ,9 10, 11 thậm trí là 12. Số phối trí là 7 thể hiện trong phức Ln(dixet) 2.2H2O, số phối trí là 8 thể hiện trong phức [Ln(C2O4)4]5-, [Ln(NTA)2]-… số phối trí là 12 thể hiện trong các hợp chất Ln2(SO4)3.9H2O, Mg2Ce2(NO3)12.12H2O…[17]. Một trong những nguyên nhân làm cho các NTĐH có số phối trí cao và biến đổi trong các phức của chúng là do bán kính ion Ln3+ lớn. Sự xuất hiện số phối trí nào đó còn liên quan đến đặc điểm của phối tử hữu cơ, tuy nhiên ảnh hƣởng của yếu tố này sẽ không đáng kể nếu các phức của các NTĐH không mang bản chất ion. Các NTĐH hầu nhƣ kh ông tham gia tạo liên kết cộng hoá trị với các phối tử vô cơ, kể cả các phối tử hoạt động nhƣ S2O32 -, CN-, NO3-… Nếu có thì độ bền của phức tạo thành cũng bé. Nhƣ vậy chỉ có tính không định hƣớng và không bão hoà của các liên kết hoá học trong các hợp chất ion là phù hợp với đặc điểm số phối trí cao và biến đổi của các NTĐH. Bản chất liên kết ion của các phức đƣợc giải Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  17. 11 thích bằng các ocbitan 4f của NTĐH chƣa đƣợc lấp đầy và đƣợc chắn bởi các electron 5s và 5p. Do đó, phối tử không có khả năng phân bố lên cá c ocbitan 4f còn trống nữa [17]. Trong dãy lantanit, khả năng tạo phức của các NTĐH tăng dần từ La đến Lu. Điều này đƣợc giải thích dễ dàng qua cấu trúc nguyên tử của chúng. Cụ thể khi đi từ La đến Lu bán kính ion giảm dần, điện tích hạt nhân tăng, do đó l ực hút tĩnh điện giữa ion đất hiếm và phối tử tăng dần. Sự tạo phức bền giữa ion đất hiếm với các phối tử hữu cơ đƣợc giải thích theo hai yếu tố: - Do hiệu ứng chelat (hiệu ứng vòng càng) có bản chất entropi, quá trình tạo phức vòng càng làm tăng entropi. - Do liên kết giữa đất hiếm và phối tử chủ yếu mang bản chất ion. Vì vậy điện tích âm của phối tử càng lớn, tƣơng tác tĩnh điện giữa phối tử và ion đất hiếm càng mạnh và do đó phức tạo thành càng bền vững. Ngoài cấu trúc phối tử, tính chất của vòng càng ch ứa kim loại cũng ảnh hƣởng đến độ bền của phức vòng. Trong phức chất vòng 5 và vòng 6 cạnh là những cấu trúc bền vững nhất [17]. Theo các tài liệu [1], [15], [19], [21], [24] đã nghiên cứu phức rắn của một số nguyên tố đất hiếm (Eu3+, Tb3+,..) với L-phenylalanin, L-triptophan, L-histidin, L-leuxin theo tỉ lệ 1:3. Nhóm tác giả [13] đã nghiên cứu phức của lantan với L -methionin theo tỉ lệ 1:3 và phức có công thức La(Met)3(NO3)3. 1.3.2 Khả năng tạo phức của các NTĐH với amino axit L -tyrosin Một trong những hợp chất hữu cơ tạo đƣợc phức bền với NTĐH là amino axit. Có nhiều quan điểm khác nhau về sự tạo phức giữa NTĐH và aminoaxit: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  18. 12 Theo tác giả L.A. Trugaep thì trong phức chất của kim loại với amino axit, liên kết tạo thành đồng thời với nhóm cacboxyl và nhóm amino. Tùy theo sự sắp xếp tƣơng hỗ của các nhóm này mà phức chất tạo thành là hợp chất vòng có số cạnh khác nhau (hợp chất chelat) nhƣ 3, 4, 5, 6 cạnh… Độ bền của phức chất phụ thuộc vào số cạnh, trong đó vòng 5, 6 cạnh là bền nhất [14]. E.O. Zeviagisep c ho rằng phản ứng này không xảy ra trong môi trƣờng axit hoặc trung tính, sự tạo thành các hợp chất vòng chỉ xảy ra khi kiềm hóa dung dịch. Tuy nhiên ở pH cao xảy ra sự phân hủy phức tạo thành các hydroxit đất hiếm [6]. Phức tạo bởi các NTĐH và amino axit trong dung dịch thƣờng là phức bậc. Sự tạo thành các phức bậc đƣợc xác nhận khi nghiên cứu tƣơng tác giữa các NTĐH với glixerin và alanin bằng phƣơng pháp đo độ dẫn điện riêng. Đối với amino axit, anion của amino axit H2NCHRCOO- chứa 3 nhóm cho electron (N: , O: , O=) trong đó oxi của nhóm xeton ít khi liên kết với ion kim loại cùng với 2 nhóm kia, vì khi liên kết nhƣ vậy sẽ tạo vòng 4 cạnh không bền. Đối với các amino axit có nhóm chức ở mạch nhánh, nếu nhóm chức này mang điện tích dƣơng, ví dụ nhƣ acginat thì độ bền của phức giảm đi chút ít do sự đẩy tĩnh điện. Nếu các nhóm này mang điện tích âm nhƣ glutamat thì chúng có thể tham gia tạo liên kết để tạo thành phức chất hai nhân bền (một phân tử nƣớc đóng vai trò là cầu nối) [4]. Đ ã có nhiều tài liệu nghiên c ứu phản ứng tạo phức của L - tyrosin với c ác kim loại chuyển tiếp và không chuyển tiếp. Tuy nhiên nghiên cứu phản ứng tạo phức của L-tyrosin với các NTĐH còn rất hạn chế, đặc biệt phản ứng tạo phức của samari, europi, tuli, ytecbi với L-tyrosin chƣa có một công trình nào trong nƣớc công bố, kể cả trong dung dịch hoặc phức rắn. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  19. 13 Các tác giả [21] đã nghiên cứu phản ứng tạo phức của: Fe(II), Cu(II), Zn(II), Cd(II) với L-tyrosin. Tất cả các nghiên cứu đều chỉ ra rằng liên kết trong phức chất tạo bởi nhóm -COO- và -NH2 với ion kim loại. Các tác giả [18] đã nghiên cứu phức rắn của Sn(II), Sn(IV), Zn(II), Cd(II), Hg(II), Cr(III), Fe(III), La(III), ZrO(II) và UO 2(II) với L-tyrosin theo tỉ lệ 1:2, 1:3. 1.4 Một số phƣơng pháp nghiên cứu phức chất. 1.4.1 Phương pháp trắ c quang UV- VIS. Có rất nhiều phƣơng pháp nghiên cứu sự tạo phức trong dung dịch nhƣ: phƣơng pháp trắc quang, phƣơng pháp cực phổ, phƣơng pháp chuẩn độ đo pH…Trong nghiên cứu này chúng tôi sử dụng phƣơng pháp trắc quang UV -VIS. Nguyên tắc: phƣơng pháp trắc quang dựa vào việc đo cƣờng độ dòng sáng còn lại sau khi đi qua dung dịch bị chất phân tích hấp thụ một phần. Nếu dung dịch phân tích trong suốt có màu thì gọi là phƣơng pháp đo màu. Nếu dung dịch phân tích là dung dịch keo thì gọi là phƣơng pháp đo độ đục . Trong phƣơng pháp đo độ đục nếu đo cƣờng độ dòng sáng sau khi bị các hạt keo hấp thụ thì gọi là phƣơng pháp hấp đục, nếu đo cƣờng độ dòng sáng do các hạt keo khuếch tán gọi là phƣơng pháp khuếch đục. Để đo cƣờng độ dòng sáng có thể so sánh bằng mắt, phƣơng pháp dùng dụng cụ (máy đo) ngƣời ta dùng máy có tế bào quang điện hay tế bào nhân quang điện. Phƣơng pháp này cho kết quả tƣơng đối khách quan và chính xác nên đƣợc sử dụng rất rộng rãi [5]. Các tác giả [8], [9], [11], [12], [20] đã nghiên cứu sự tạo p hức giữa ion đất hiếm và amino axit trong dung dịch là 1:1, 1:2, 1:3 và dùng tỉ lệ1:2 để xác định hằng số bền của phức tạo thành. 1.4.2 Phương pháp phổ hấp thụ hồng ngoại Phổ hấp thụ hồng ngoại là phƣơng pháp vật lý hiện đại cho nhiều thông tin quan trọng về thành phần và cấu tạo của phức chất. Khi chiếu mẫu nghiên cứu Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  20. 14 bằng bức xạ hồng ngoại có thể làm dịch chuyển mức năng lƣợng dao động quay của các phân tử. Đối với các phân tử đơn giản có thể dùng công thức năng lƣợng dao động để tính tần số của dải hấp thụ ứng với dao động cơ bản. Còn đối với các phân tử phức tạp ta thƣờng dùng phƣơng pháp gần đúng dao động nhóm. Phƣơng pháp này dựa trên giả thiết trong phân tử các nhóm nguyên tử là tƣơng đối độc lập nhau. Do vậy mỗi nhóm nguyên tử đƣợc đặc trƣng bằng mộ t phổ hấp thụ nhất định trong phổ hồng ngoại. Khi có sự tạo phức giữa phối tử và ion kim loại, sự thay đổi vị trí các dải hấp thụ nhóm khi chuyển từ phổ của phối tử tự do sang phổ của phức, cho ta biết vị trí phối trí, bản chất liên kết kim loại – phối tử trong phức chất..., cách phối trí của phân tử phối tử. Để đánh giá bản chất và đặc tính của các liên kết trong phức chất giữa kim loại M và phối tử L, ngƣời ta thƣờng so sánh phổ các phức chất với muối kim loại kiềm và phối tử nhƣ KnL (K là kim loại kiềm). Đó là những chất mang bản chất ion. Hoặc với phổ của các hợp chất kiểu R – L (R là alkyl hay H) có liên kết mang bản chất cộng hóa trị. Trên cơ sở so sánh này ta có thể đánh giá mức độ tƣơng đối cộng hóa trị và độ bền của liên kết kim loại – phối tử trong phức chất nghiên cứu. Phần lớn kết luận này mang tính chất định tính. Xét một vài tần số đặc trƣng của liên kết: C – O; N – H; O – H. Các tần số νasC=O; νasC-O; νsC-O Trong phổ của các axit cacboxylic và muối của chúng có tính đặc thù cao. Đặc trƣng của các nhóm –COOH là các dải hấp thụ trong vùng 1700  1750 cm-1 (νasC=O), các nhóm –COO- trong vùng 1570  1590 cm-1 (νasC-O) và vùng 14001420 cm-1 (νsC-O). Các phân tử amino axit thƣờng có cấu tạo lƣỡng c ực, trong phổ hồng ngoại của chúng các giá trị νasC-O nằm trong khoảng 1600  1630 cm-1, còn νsC-O Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2