intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Phân tích động mờ khung thép phẳng được giằng sử dụng thuật toán tiến hóa vi phân

Chia sẻ: ViEdison2711 ViEdison2711 | Ngày: | Loại File: PDF | Số trang:3

53
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài viết nghiên cứu áp dụng thủ tục phần tử hữu hạn mờ phân tích động kết cấu khung thép phẳng với các đại lượng đầu vào mờ. Các hệ số liên kết giữa dầm – cột, cột – móng, tải trọng, khối lượng riêng và hệ số cản được mô tả dưới dạng các số mờ tam giác. Phương pháp tích phân số β – Newmark được áp dụng xác định chuyển vị trong hệ phương trình cân bằng động tuyến tính.

Chủ đề:
Lưu

Nội dung Text: Phân tích động mờ khung thép phẳng được giằng sử dụng thuật toán tiến hóa vi phân

Phân tích động mờ khung thép phẳng được giằng<br /> sử dụng thuật toán tiến hóa vi phân<br /> Fuzzy dynamic analysis of 2d-braced steel frame using differential evolution optimization<br /> Viet T. Tran, Anh Q. Vu, Huynh X. Le<br /> <br /> <br /> Tóm tắt 1. Introduction<br /> <br /> Bài báo nghiên cứu áp dụng thủ tục phần tử hữu In the dynamic analysis of steel frame structures with semi-rigid<br /> connections, rigidity of the connection (or fixity factor of the connection),<br /> hạn mờ phân tích động kết cấu khung thép phẳng<br /> loads, mass per unit volume, damping ratio … have a significant influence<br /> với các đại lượng đầu vào mờ. Các hệ số liên kết<br /> on the time – history response of steel frame structure [4]. In practice,<br /> giữa dầm – cột, cột – móng, tải trọng, khối lượng<br /> however, many parameters like worker skill, quality of welds, properties<br /> riêng và hệ số cản được mô tả dưới dạng các số mờ of material and type of the connecting elements affect the behavior of a<br /> tam giác. Phương pháp tích phân số β – Newmark connection, and this fixity factor is difficult to determine exactly. Therefore, in<br /> được áp dụng xác định chuyển vị trong hệ phương a practical analysis of structures, a systematic approach need to include the<br /> trình cân bằng động tuyến tính. Phương pháp tối uncertainty in the connection behavior, and the fixity factor of a connection<br /> ưu mức – α sử dụng thuật toán tiến hóa vi phân modeled as the fuzzy number is reasonable [5]. In addition, the uncertainty<br /> được tích hợp với mô hình phần tử hữu hạn để of input parameters is also described in form of fuzzy numbers, such as<br /> phân tích động kết cấu mờ. Hiệu quả của phương external forces, mass per unit volume and damping ratio. In this paper, the<br /> pháp đề xuất được minh họa thông qua ví dụ liên fuzzy displacement - time dependency of a planar steel frame structure<br /> quan đến khung thép phẳng hai mươi lăm tầng, is determined in which the fixity factor, loads, mass per unit volume, and<br /> ba nhịp được giằng tập trung. damping ratio are described in the form of any triangular fuzzy numbers.<br /> Từ khóa: Khung thép giằng, liên kết mờ, động lực kết cấu A procedure is based on finite element model by combining the α – level<br /> mờ, thuật toán tiến hóa vi phân optimization with the Differential Evolution algorithm (DEa). The Newmark-β<br /> average acceleration numerical integration method is applied to determine<br /> the displacements from the linear dynamic equilibrium equation system of<br /> Abstract the finite element model.<br /> This paper studies the application of the fuzzy finite 2. Finite element with linear semi-rigid connection<br /> element procedure for dynamic analysis of the planar<br /> The linear dynamic equilibrium equation system is given as following<br /> semi-rigid steel frame structures with fuzzy input<br /> parameters. The fixity factors of beam – column and [ M ]{u} + [C ]{u} + [ K ]{u} = {P ( t )} (1)<br /> column – base connections, loads, mass per unit<br /> volume and damping ratio are modeled as triangular where {u} , {u} , and {u } are the vectors of acceleration, velocity, and<br /> fuzzy numbers. The Newmark-β numerical integration displacement respectively; [M], [C], and [K] are the mass, damping, and<br /> method is applied to determine the displacement of stiffness matrices respectively; {P(t)} is the external load vector. The viscous<br /> the linear dynamic equilibrium equation system. The damping matrix [C] can be defined as<br /> α – level optimization using the Differential Evolution = [C ] α M [ M ] + β K [ K ] (2)<br /> (DE) integrated finite element modeling to analyse<br /> dynamic of fuzzy structures. The efficiency of proposed where αM and βK are the proportional damping factors which defined as<br /> methodology is demonstrated through the example 2ω1ω2 2<br /> problem relating to the twenty-five – story, three – bay = α M ξ= ;β ξ<br /> ω1 + ω2 K ω1 + ω2 (3)<br /> concentrically braced frame.<br /> Keywords: braced steel frame, fuzzy connection, fuzzy where ξ is the damping ratio; ω 1 and ω 2 are the natural radian frequencies<br /> of the first and second modes of the considered frame, respectively.<br /> structural dynamic, differential evolution algorithm<br /> In this study, the frame element with linear semi – rigid connection is<br /> shown in Fig. 1, with E - the elastic modulus, A – the section area, I – the<br /> inertia moment, m - the mass per unit volume, k1 and k2 – rotation resistance<br /> MS. Viet T. Tran<br /> stiffness at connections.<br /> Faculty of civil engineering, Duy Tan University<br /> Email: The element stiffness matrix - [Kel] and the mass matrix - [Mel] of the<br /> Ass. Prof. Anh Q. Vu frame are given by [4], with si = Lki / (3EI + Lki) denote the fixity factor of<br /> Faculty of civil engineering semi – rigid connection at the boundaries (i = 1,2). In Eq. (1), when fixity<br /> Hanoi Architectural University factors of connections, external loads, mass per unit volume and damping<br /> Email: ratio are given by fuzzy numbers, the displacements of joints are also fuzzy<br /> Prof. Huynh X. Le numbers. In steel structures, the common fuzzy connections can be defined<br /> Faculty of civil engineering by linguistic terms as shown in Fig. 2. Eleven linguistic terms are assigned<br /> National University of Civil Engineering numbers from 0 to 10 ( si = 0,1,...10 ) [5].<br /> Email: In the classical finite element method (FEM), in Eq. (1), the displacement<br /> – time dependency of the joints is determined by solving the linear dynamic<br /> equilibrium equation system. The Newmark-β method has been chosen for<br /> <br /> <br /> S¬ 27 - 2017 45<br /> KHOA H“C & C«NG NGHª<br /> <br /> <br /> <br /> <br /> Figure 1. Frame element with Figure 2. Membership functions of fuzzy fixity factors<br /> linear semi-rigid connection<br /> <br /> <br /> <br /> <br /> Figure 4. Fuzzy displacement-time response at joint<br /> 26 in x direction<br /> <br /> <br /> <br /> <br /> Figure 3. Concentrically braced steel frame with Figure 5. The membership functions of fuzzy<br /> fuzzy input parameters displacement at joint 26<br /> <br /> <br /> <br /> the numerical integration of this equation system because of The displacement of the joint at each time step is<br /> its simplicity [1]. The fuzzy displacement is determined by the determined by this algorithm of linear elastic dynamic<br /> fuzzy finite element method (FFEM) using the α-cut strategy analysis.<br /> with the optimization approaches. FFEM is an extension of<br /> FEM in the case that the input quantities in the FEM are 3.2. α – level optimization using Differential Evolution<br /> modeled as fuzzy numbers. In this study, an optimization algorithm (DEa)<br /> approach is presented in the next sections: the differential For fuzzy structural analysis, the α-level optimization is<br /> evolution algorithm (DEa). known as a general approach in which all the fuzzy inputs<br /> are discretized by the intervals that are equal α-levels.<br /> 3. Proceduce for fuzzy structural dynamic analysis The output intervals are then searched by the optimization<br /> 3.1. Linear elastic dynamic analysis algorithm algorithms. The optimization process is implemented directly<br /> The Newmark-β method is based on the solution of an by the finite element model and the goal function is evaluated<br /> incremental form of the equations of motion. For the equations many times in order to reach to an acceptable value. In this<br /> of motion (1), the incremental equilibrium equation is: study, the output intervals are the displacement intervals at<br /> each time step, and the solution procedure is proposed by<br /> [ M ]{∆u} + [C ]{∆u} + [ K ]{∆u} ={∆P} (4) combining the Differential Evolution algorithm (DEa) with<br /> where {u} , {u} , and {u} are the vectors of incremental the α-level optimization. The DEa has shown better than the<br /> acceleration, velocity, and displacement respectively; {∆P} is genetic algorithm (GA) and is simple and easy to use. Basic<br /> the external load increment vector. procedure of DEa is described as [6].<br /> <br /> <br /> <br /> 46 T„P CHŠ KHOA H“C KI¦N TR”C - XŸY D¼NG<br /> Table 1: Section properties used for analysis of the portal steel frame<br /> Member Section Cross – section area, A (m2) Moment of inertia, I (m4)<br /> Column (1st to 4th story) W30x391 7.35E-02 8.616E-03<br /> Column (5th to 8th story) W30x326 6.17E-02 6.993E-03<br /> Column (9th to 14th story) W27x307 5.82E-02 5.453E-03<br /> Column (15th to 20th story) W24x306 5.79E-02 4.454E-03<br /> Beam (1st to 20th story) W24x250 4.74E-02 3.534E-03<br /> <br /> 4. Numerical illustration central value) from the SAP2000 software, with t = 1.10, 2.05,<br /> A twenty-five – story, three – bay concentrically braced 2.90, 4.05, 5.10, and 6.00 seconds.<br /> frame subjected to fuzzy impulse force as shown in Fig. 3 5. Conclusion<br /> is considered. The fuzzy input parameters are: m  1 = (7.85,<br /> 0.785, 0.785), m  2 = (50, 5, 5), s1 =9, s2 = 8, s3 = 7, s4 = 6, A fuzzy finite element analysis based on the Differential<br /> s5 =5, s6 =1. The fuzzy damping ratio is ξ = (0.05, 0.005, Evolution (DE) in combination with the α – level optimization,<br /> 0.005). The fuzzy impulse force is: P ( t ) = P (0 ≤ t ≤ 3 s), and in which the Newmark-β average acceleration method is<br /> P ( t ) = 0 (t > 3 s), with P = (40, 4, 4). These fuzzy terms applied to determine the deterministic displacement. The<br /> are considered to be triangular fuzzy numbers with 20% fuzzy input parameters such as fixity factors of connections,<br /> absolute spread. A time step Δt of 0.05 second is chosen in external forces, mass per unit volume, and damping ratio<br /> the dynamic analysis. The output intervals of displacement have a significant influence on the time dependency of the<br /> are calculated by using DE programmed by MATLAB. The fuzzy displacement. With the example is considered, fuzzy<br /> section properties used for analysis of the frame are shown displacments show more different shapes of membership<br /> in Table I. functions at different times. Moreover, these fuzzy<br /> displacements have absolute spreads from 40% to 150%. In<br /> Fig. 4 shows the fuzzy displacement-time response and adition, the determinant results are also compared with ones<br /> the membership functions of fuzzy displacement at different of the SAP2000 software and give a good agreement./.<br /> times in 3D – axis. Fig. 5 shows the membership functions<br /> of fuzzy displacement and the deterministic displacement (at<br /> <br /> <br /> Tài liệu tham khảo 5. A. Keyhani, S. M. R. Shahabi. Fuzzy connections in structural<br /> analysis. ISSN 1392 – 1207 MECHANIKA, 18(4) (2012) 380-<br /> 1. N. M. Newmark. A method of computation for structural<br /> 386.<br /> dynamic. Journal of the Engineering Mechanics Division, ASCE,<br /> vol. 85 (1959) 67-94. 6. M. M. Efrén, R. S. Margarita, A. C. Carlos. Multi-Objective<br /> Optimization using Differential Evolution: A Survey of the State-<br /> 2. R. Storn, and K. Price. Differential Evolution – A Simple and<br /> of-the-Art. Soft Computing with Applications (SCA), 1(1) (2013).<br /> Efficient Heuristic for Global Optimization over Continuous<br /> Spaces. Journal of Global Optimization 11, Netherlands, (1997) 7. P. H Anh, N. X. Thanh, N. V. Hung. Fuzzy Structural Analysis<br /> 341-359. Using Improved Differential Evolution Optimization.<br /> International Conference on Engineering Mechanic and<br /> 3. M. Hanss. The transformation method for the simulation and<br /> Automation (ICEMA 3), Hanoi, October 15-16 (2014) 492-498.<br /> analysis of systems with uncertain parameters. Fuzzy Sets and<br /> Systems 130(3) (2002) 277-289. 8. T. T. Viet, V. Q. Anh, L. X. Huynh. Fuzzy analysis for stability of<br /> steel frame with fixity factor modeled as triangular fuzzy number.<br /> 4. V. Q. Anh, N. M. Hien. Geometric nonlinear vibration analysis<br /> Advances in Computational Design 2(1) (2017) 29-42.<br /> of steel frames with semi-rigid connections and rigid zones.<br /> Vietnam Journal of Mechanics, VAST 25 (2) (2003) 122-128.<br /> <br /> <br /> <br /> <br /> S¬ 27 - 2017 47<br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2