Phương pháp giải nhanh bài toán dao động điều hòa
lượt xem 720
download
Tài liệu " Phương pháp giải nhanh bài toán dao động điều hòa " nhằm giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập vật lý một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình
Bình luận(2) Đăng nhập để gửi bình luận!
Nội dung Text: Phương pháp giải nhanh bài toán dao động điều hòa
- PP GI I NHANH BÀI T P DAO ð NG ðI U HOÀ 1 PP GI I NHANH BÀI T P DAO ð NG ðI U HOÀ I.Nh c l i ki n th c: 1. Phương trình dao ñ ng: x = Acos(ωt + ϕ) v i -π ϕ π 2.V n t c t c th i: v = - ωAsin(ωt + ϕ) 3.Gia t c t c th i: a = -ω2Acos(ωt + ϕ) 4.V t VTCB: x = 0; |v|Max = ωA; |a|Min = 0 V t biên: x = ±A; |v|Min = 0; |a|Max = ω2A II.các d ng bài t p: 1.Bài toán: M t v t dao ñ ng ñi u hòa có phương trình x= Acos(ωt + ϕ). Tính kho ng th i gian ng n nh t ñ v t ñi t v trí có to ñ x1 ñ n x2 theo chi u (+) / ho c (-) Phương pháp: B1) V ñư ng tròn lư ng giác: B2) Xác ñ nh t a ñ x1 và x2 trên tr c ox. B3) Xác ñ nh ví trí c a ñi m M1 và M2 trên ñư ng tròn (trong ñó x1 và x2 l n lư t là hình chi u c a M1và M2 trên OX) và xác ñ nh chi u quay ban ñ u t i v trí x1 x1= Acos(ωt + ϕ) x2= Acos(ωt + ϕ) V1= - ωAsin(ωt + ϕ) V2 không c n xét B4)Xác ñ nh góc quét: α Trong ñó cos α1 = và cos α2 = min = ×T ( T là chu kì ) Chú ý: Kho ng th i gian ng n nh t ñ v t ñi t +t x=0ñ nx= A/2 (ho c ngư c l i) là T/12 + t x = -A ñ n x = A (ho c ngư c l i) là T/2 + t x = 0 ñ n x = A (ho c ngư c l i) là T/4 + t x = - A/2 ñ n x = - A (ho c ngư c l i) là T/6 + t x = A/2 ñ n x = A (ho c ngư c l i) là T/6 + t x = - A/2 ñ n x = A/2 (ho c ngư c l i) là T/6 2.Bài toán: M t v t dao ñ ng ñi u hòa có phương trình x= Acos(ωt + ϕ). Tính quãng ñư ng v t ñi ñư c t th i ñi m t1 ñ n t2. Phương pháp: B1) Xét t s = n ( ph n nguyên) Phân tích: T2 - T1 = nT + (n ∈N; 0 ≤ ∆t < T) ( xác ñ nh s dao ñ ng toàn ph n n ) nickYH:nmt_valentine91 @yahoo.com.vn ðT: 01662 858 939
- PP GI I NHANH BÀI T P DAO ð NG ðI U HOÀ 2 TH1. 0 S = 4nA TH2. S = 4nA + 2A TH3. là m t s l thì ta xác ñ nh Quãng ñư ng t ng c ng là S = S1+ S2 S1 là quãng ñư ng ñi trong trong th i gian n l n chu kì T (nT - m t s nguyên l n chu kì) S1= 4nA S2là quãng ñư ng ñi trong th i gian ∆t S2 ñư c tính như sau : Thay các giá tr c a t1 và t2 vào phương trình cua li ñ và v n t c: t=t1 x1= Acos(ωt + ϕ) t= t2 x2= Acos(ωt + ϕ) V1= - ωAsin(ωt + ϕ) V2= - ωAsin(ωt + ϕ) Xác ñ nh li ñ x1 và x2 Xác ñ nh d u c a V1 và V2 TH1: V1. V2 0 S2 = | x2– x1| S2 = 4A – | x2– x1| TH2: V1. V2 0 V1 0 S2 = 2A – x2– x1 V1 0 S2 = 2A + x2+ x1 Chú ý :*Trong bài toán tr c nghi m ta ch nên v hình minh h a chuy n ñ ng t ñó xác ñ nh S2 mà không c n nh công th c. *D a vào k t qu trên ta có th giói h n ñư c k t qu c a bài toán tr c nghi m: V i S2 V i S2 (t ñó có th ch n k t qu ñúng trong th i gian ng n) 3. Bài toán:M t v t dao ñ ng ñi u hòa có phương trình x= Acos(ωt + ϕ) k t lúc t=t0 v t ñi qua v trí có li ñ x= x1 l n th n vào th i ñi m nào. Phương pháp: B1) T PT: x= Acos(ωt + ϕ) t i t=t0 x = x0 M0 (1) V i x= x1 M1 v = - ωAsin(ωt + ϕ) v = v0 (xét d u) (2) (Trong ñó x0 và x1 l n lư t là hình chi u c a M0 và M1 trên OX) B2)V ñư ng tròn lư ng giác. *TH1) v0 > 0 thì: sin(ωt0 + ϕ) < 0 v y M0 n m dư i tr c OX. nickYH:nmt_valentine91 @yahoo.com.vn ðT: 01662 858 939
- PP GI I NHANH BÀI T P DAO ð NG ðI U HOÀ 3 ði qua 1 l n ði qua 2 l n *TH2) v0 < 0 thì: sin(ωt0 + ϕ) > 0 v y M0 n m trên tr c OX . ði qua 1 l n ði qua 2 l n Ta quy ư c g i ||n|| là s ch n nh hơn n và g n n nh t. Ví d : ||8|| = 6 ; ||7|| =6 ; ||9|| =8 ; ||2|| =0; ||1|| = 0 Ta xét ||n|| c a bài toán Th i gian = T + (vì trong nh ng chu kì ñ u thì c 1 chu kì tương ng M0 ñi qua v trí M1 2 l n trong ñó x1 là hình chi u c a M1 trên Ox) trong ñó T là chu kì là th i gian ñi qua 1 l n ho c 2 l n. Bài toán quy v : Tìm ñ v t ñi qua v trí có li ñ x= x1 l n th ( n - ||n|| ) ð i v i n ch n thì quy bài toán ñi qua 2 l n. ð i v i n l thì quy bài toán ñi qua 1 l n. ð tính ta tính th i gian ñ v t ñi t x1 ñ n x2: Cách làm là: 1) Quay véc tơ OM0 theo chi u chuy n ñ ng c a v t t i véc tơ OM1 và xác ñ nh góc quét t o ñư c, không nh t thi t ph i là góc bé. = ×T và Th i ñi m = Th i gian + t0 Chú ý: ta ch c n xét v n t c t i th i ñi m ñó mà không c n quan tâm ñ n v n t c sau . 4.Bài toán M t v t dao ñ ng ñi u hòa có phương trình x= Acos(ωt + ϕ). Tìm s l n v t ñi qua v trí ñã bi t x = x0 t th i ñi m t1 ñ n t2. Phương Pháp: Xét chuy n ñ ng: nickYH:nmt_valentine91 @yahoo.com.vn ðT: 01662 858 939
- PP GI I NHANH BÀI T P DAO ð NG ðI U HOÀ 4 t=t1 x1= Acos(ωt1 + ϕ) t= t2 x2= Acos(ωt2+ ϕ) V1= - ωAsin(ωt1+ ϕ) V2=- ωAsin(ωt2+ ϕ) V1 < 0 và V2 < 0 V1 > 0 và V2 < 0 V1 > 0 và V2 > 0 V1 < 0 và V2 > 0 Xác ñ nh v trí c a x0 trên ño n –AA. Ví d : : Hình 1.1 Xét t s = n (ph n nguyên) Phân tích: t2 - t1 = nT + (n ∈N; 0 ≤ ∆t < T) ( xác ñ nh s dao ñ ng toàn ph n n ) s l n v t ñi qua v trí ñã bi t x = x0 t th i ñi m t1 ñ n t2 là +k v ik ñ xác ñ nh k ta ch có th d a vào hình v c th . Ví d : ði qua 0 l n ði qua 1 l n ñi qua 2 l n 5. Bài toán: Tính quãng ñư ng l n nh t nh nh t. D ng1: M t v t dao ñ ng ñi u hòa có phương trình x= Acos(ωt + ϕ).Tìm v trí ban ñ u c a v t ñ v t ñi ñư c quãng ñư ng là l n nh t trong kho ng th i gian và tính quãng ñư ng l n nh t ñó. Phương pháp: Xét t s = n (ph n nguyên) Phân tích: t = nT + (n ∈N; 0 ≤ ∆t < T) ( xác ñ nh s dao ñ ng toàn ph n n ) Ta có nh n xét là v n t c c a v t là l n nh t khi v t ñi qua v trí cân b ng.Vì v y trong kho ng th i gian xác ñ nh thì M1M2ph i nh n Oy là ñư ng trung tr c. nickYH:nmt_valentine91 @yahoo.com.vn ðT: 01662 858 939
- PP GI I NHANH BÀI T P DAO ð NG ðI U HOÀ 5 0 T/2 T/2 T Smax = n4A + S. TH1: 0 T/2 Ta có: α = 360 sin( α/2) =| | và S=2 V y v trí ban ñ u c a v t là TH2: T/2 T Ta có: α = 360 sin( α/2) =| | và S = 4A - 2 V y v trí ban ñ u c a v t là D ng2: M t v t dao ñ ng ñi u hòa có phương trình x= Acos(ωt + ϕ).Tìm v trí ban ñ u c a v t ñ v t ñi ñư c quãng ñư ng là bé nh t trong kho ng th i gian và tính quãng ñư ng bé nh t ñó. Phương pháp: Xét t s = n (ph n nguyên) Phân tích: t = nT + (n ∈N; 0 ≤ ∆t < T) ( xác ñ nh s dao ñ ng toàn ph n n ) Ta có nh n xét là v n t c c a v t là l n nh t khi v t ñi qua v trí cân b ng.Vì v y trong kho ng th i gian xác ñ nh thì M1M2 ph i nh n Ox là ñư ng trung tr c. 0 T/2 T/2 T Smin = n4A + S. TH1: 0 T/2 Ta có: α = 360 cos(α/2) = | | và S = 2A – 2Acos(α/2) = 2A(1 - cos(α/2)) V y v trí ban ñ u c a v t là TH2: T/2 T Ta có: α = 360 cos(α/2) = | | và S = 4A – (2A – 2Acos(α/2)) = 2A(1 + cos(α/2)) V y v trí ban ñ u c a v t là nickYH:nmt_valentine91 @yahoo.com.vn ðT: 01662 858 939
- PP GI I NHANH BÀI T P DAO ð NG ðI U HOÀ 6 6. Bài toán:Tìm th i gian lò xo nén giãn trong m t chu kỳ 7. Bài toán:Tìm th i gian ñèn huỳnh quang t t sáng trong m t chu kỳ. Chú ý: Các d ng toán nêu trên * N u bài toán không cho pt li ñ x d ng hàm cos mà cho hàm sin thì ta ñ i v cos. (sin v cos thì tr ñi π/2 , cos v sin thì c ng thêm π/2) * Cơ s lí thuy t c a nh ng bài toán nêu trên ñó là: - hình chi u c a m t chuy n ñ ng tròn ñ u lên m t tr c Ox hay Oy ñ u có th coi như chuy n ñ ng c a con l c không tính ñ n ma sát. - sau kho ng th i gian b ng m t chu kì T thì tính ch t c a chuy n ñ ng l p l i như cũ bao g m t a ñ x, v n t c v, gia t c a. T t c bài toán d ng này xin chúng ta nh r ng: ─ Xét trong chu kỳ cu i. ─ Xác ñ nh chi u quét,góc quét v trí ban ñ u, th i ñi m ban ñ u. ─ Xác ñ nh v trí sau, th i ñi m sau. ─Ta ch c n xác ñ nh v n t c t i th i ñi m ban ñ u mà không c n quan tâm v n t c sau (tr bài tính quãng ñư ng) Tài li u m i ñư c nghiên c u vì v y còn nhi u sai sót mong các b n ñ c gi thông c m và góp ý ki n. M i s góp ý xin g i v ñ a ch Email: nmt_valentine91@yahoo.com.vn ho c s ðT:01662 858 939 nickYH:nmt_valentine91 @yahoo.com.vn ðT: 01662 858 939
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Các phương pháp giải nhanh bài toán Hóa học
14 p | 14880 | 2432
-
10 phương pháp giải nhanh bài tập môn Hóa
92 p | 2005 | 909
-
Phương pháp giải nhanh bài toán đốt cháy hidrocacbon lớp 12
14 p | 1304 | 420
-
Phương pháp giải nhanh một số bài toán Vật lí
21 p | 774 | 305
-
Các phương pháp giải nhanh bài toán Hóa học - GV. Đỗ Xuân Hưng
77 p | 336 | 123
-
SKKN: Phương pháp giải nhanh bài toán dao động điều hòa – Con lắc lò xo
27 p | 534 | 110
-
Các bài toán Sinh học trọng tâm và phương pháp giải nhanh
122 p | 274 | 91
-
Phương pháp giải nhanh bài tập Hóa học - GV. Nguyễn Minh Tuấn
97 p | 384 | 81
-
SKKN: Nâng cao hiệu quả giảng dạy Sinh học 12 thông qua phương pháp giải nhanh bài toán trắc nghiệm về quy luật phân li độc lập
18 p | 248 | 59
-
Các phương pháp giải nhanh bài tập trắc nghiệm phần hóa học hữu cơ
11 p | 188 | 39
-
Chia sẻ phương pháp giải nhanh bài toán trắc nghiệm Hóa hữu cơ: Phần 1
211 p | 211 | 38
-
Vận dụng linh hoạt các phương pháp để giải nhanh bài toán Hoá học
7 p | 187 | 23
-
Chia sẻ phương pháp giải nhanh các bài toán Hóa học trọng tâm: Phần 2
178 p | 139 | 19
-
Chia sẻ phương pháp giải nhanh các bài toán Hóa học trọng tâm: Phần 1
174 p | 101 | 17
-
Chia sẻ phương pháp giải nhanh bài toán trắc nghiệm Hóa hữu cơ: Phần 2
119 p | 124 | 16
-
Sáng kiến kinh nghiệm THPT: Phương pháp giải nhanh bài toán phóng xạ trong chương trình Vật lý lớp 12
38 p | 45 | 10
-
Sáng kiến kinh nghiệm THPT: Phương pháp giải nhanh bài toán trắc nghiệm về con lắc lò xo và con lắc đơn khi thay đổi cấu trúc của chúng
28 p | 38 | 7
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn