SKKN: Hướng dẫn học sinh lớp 7 giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối

Chia sẻ: Lê Hoa Trà | Ngày: | Loại File: PDF | Số trang:17

0
674
lượt xem
196
download

SKKN: Hướng dẫn học sinh lớp 7 giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề tài sáng kiến kinh nghiệm hướng dẫn học sinh lớp 7 giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối với mục đích nhằm giải đáp những vướng mắc khi giải bài toán tìm x có chứa dấu tuyệt đối cho học sinh một cách lô gíc và có khoa học. Mời các bạn tham khảo!

Chủ đề:
Lưu

Nội dung Text: SKKN: Hướng dẫn học sinh lớp 7 giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối

  1. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. Sáng kiến kinh nghiệm Hướng dẫn học sinh lớp 7 giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối Gv: Bạch Thị Phương Dung 1 Trường THCS Nguyễn Huệ
  2. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. A. MỞ ĐẦU : 1. Lý do chọn đề tài: Khi dạy học môn toán 7 , tôi nhận thấy học sinh còn nhiều vướng mắc khi giải bài toán tìm x có chứa dấu giá trị tuyệt đối . Đa số học sinh khi giải còn thiếu lô gíc ,chặt chẽ , thiếu trường hợp . Lí do là các vận dụng tính chất , định nghĩa giá trị tuyệt đối chưa chắc .Các em chưa phân biệt được các dạng toán và áp dụng tương tự vào bài toán khác . Mặt khác nội dung kiến thức ở lớp 6 & 7 ở dạng này để áp dụng còn hạn chế nên không thể đưa ra đầy đủ các phương pháp giải một cách có hệ thống và phong phú được . Mặc dù chương trình sách giáo khoa sắp xếp rất hệ thống và lô gíc, có lợi thế về dạy học đặt vấn đề trong dạng toán tìm x này.Chính vì vậy, để khắc phục cho học sinh những sai lầm khi giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối.Tôi đã suy nghĩ , tìm tòi và áp dụng vào trong giảng dạy thấy có hiệu quả cao . Nên tôi mạnh dạn viết sáng kiến kinh nghiệm “ Hướng dẫn học sinh lớp 7 giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối ” với mục đích giúp cho học sinh tự tin hơn trong làm toán. 2. Mục tiêu của đề tài: a/ Mục đích: Nhằm giải đáp những vướng mắc khi giải bài toán tìm x có chứa dấu tuyệt đối cho học sinh một cách lô gíc và có khoa học. b/ Đối tượng nghiên cứu: Học sinh khối 7 của trường thcs Nguyễn Huệ có học lực dưới mức giỏi. c/ Phương pháp nghiên cứu: Thông qua bài kiểm tra khảo sát đầu năm, kiểm tra vấn đáp những kiến thức cơ bản, trọng tâm mà các em đã được học. Qua đó giúp tôi nắm được những ''lỗ hổng” kiến thức của các em. Rồi tìm hiểu nguyên nhân và lập kế hoạch khắc phục. Gv: Bạch Thị Phương Dung 2 Trường THCS Nguyễn Huệ
  3. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. d/ Phạm vi: Học sinh khối 7 trường THCS Nguyễn Huệ. e/ Thời gian: Tháng 9 năm 2010 – Tháng 11 năm 2010. B. NỘI DUNG I. CƠ SỞ CHỌN ĐỀ TÀI: 1. Cơ sở lý luận: Lớp 7 là cơ sở hạ tầng của bậc trung học cơ sở. Kiến thức toán học lớp 6 & 7 là những cơ sở bước đầu của bậc trung học cơ sở. Nắm vững kiến thức, kỹ năng toán học ở lớp 7 là điều kiện thuận lợi để học tốt ở các lớp trên. 2. Cơ sở thực tiễn: Bản thân tôi là giáo viên vào ngành được 10 năm. Trong những năm qua tôi được phân công giảng dạy môn toán ở nhiều khối lớp từ 6 đến 9. Tham gia dạy bồi dưỡng học sinh giỏi. Khi dạy học môn toán 7 , tôi nhận thấy học sinh còn nhiều vướng mắc khi giải bài toán tìm x có chứa dấu giá trị tuyệt đối . Đa số học sinh khi giải còn thiếu lô gíc ,thiếu chặt chẽ , thiếu trường hợp. Chất lượng môn toán của học sinh còn hạn chế, học sinh giỏi còn ít. Với học sinh lớp 7 ở trường THCS Nguyễn Huệ đa số các em là con nông dân nên điều kiện dành cho các em học tập là ít ,đặc biệt là vào mùa thu hoạch càfe .Nên gặp bài toán này các em làm được rất ít ,hoặc làm thì thường mắc những sai lầm sau: Ví dụ 1 : tìm x , biết x3 2 Gv: Bạch Thị Phương Dung 3 Trường THCS Nguyễn Huệ
  4. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. Học sinh chưa nắm được đẳng thức luôn xảy ra vì (2> 0 ) mà vẫn xét hai trường hợp x-3 >0 và x -3 < 0 và giải hai trường hợp tương ứng .Cách làm này chưa gọn Ví dụ 2 : tìm x ,biết : 2 x  3 -5 = 1 Nhiều học sinh chưa đưa về dạng cơ bản để giải mà nhanh chóng xét hai trường hợp giống như ví dụ 1 Ví dụ 3 : tìm x biết x  1 -x = 2 (1) Học sinh đã làm như sau: Nếu x-1  0 suy ra x-1 -x =2 Nếu x-1
  5. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. Tôi thấy học sinh còn lúng túng về cách giải ,chưa nắm vững phương pháp giải đối với từng dạng bài , chưa kết hợp được kết quả với điều kiện xảy ra , chưa lựa chọn được phương pháp giải nhanh gọn và hợp lí . Kết quả đạt được như sau : Giỏi Khá Trung bình Yếu và kém 3% 9% 43% 45% Kết quả thấp là do học sinh còn vướng mắc những điều tôi đã nói ở trênvà phần lớn các em chưa làm được câu c,d . Gv: Bạch Thị Phương Dung 5 Trường THCS Nguyễn Huệ
  6. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. II. GIẢI QUYẾT VẤN ĐỀ: II.1/ . Các giải pháp thực hiện * Cung cấp kiến thức có liên quan đến bài toán Điều khó khăn khi dạy học sinh lớp 7 là các em chưa được học giải phương trình , bất phương trình, các phép biến đổi tương đương , hằng đẳng thức ….Nên giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối có những phương pháp xây dựng thì chưa thể hướng dẫn được học sinh vì thế các em cần nắm vững các kiến thức sau : 1, Yêu cầu học sinh nắm vững cách giải bài toán tìm x cơ bản dạng A(x) = B(x) dạng này cần nắm vững quy tắc bỏ dấu ngoặc ,chuyển vế 2, Định lí và tính chất về giá trị tuyệt đối . A = A khi A  0 -A khi A
  7. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. b. Phương pháp giải Ta lần lượt xét A(x) = B hoặc A(x) = -B c.Ví dụ Ví dụ 1 :( Bài 25 (a) sách giáo khoa trang 16 tập 1) Tìm x , biết x  1,7 = 2,3 GV: Đặt câu hỏi bao quát chung cho bài toán : Đẳng thức có xảy ra không ? vì sao? ( Đẳng thức có xảy ra vì x  1,7  0 và 2,3  0 ) Cần áp dụng kiến thức nào để giải , để bỏ được dấu giá trị tuyệt đối ( áp dụng tính chất giá trị tuyệt đối của hai số đối nhau thì bằng nhau ) Bài giải x  1,7 = 2,3  x-1,7= 2,3 ; hoặc x-1,7 = -2,3 + Xét x-1,7= 2,3  x= 2,3 + 1,7  x= 4 + Xét x-1,7 = -2,3  x = -2,3 +1,7  x=-0,6 Vậy x=4 hoặc x=-0,6 Từ ví dụ đơn giản ,phát triển đưa ra ví dụ khó dần Ví dụ 2 : ( bài 25b SGK trang 16 tập 1) 3 1 Tìm x biết x  0 4 3 Với bài này tôi đặt câu hỏi ‘Làm sao để đưa về dạng cơ bản đã học ‘ 3 1 Từ đó học sinh biến đổi đưa về dạng x   4 3 Bài giải 3 1 x  0 4 3 Gv: Bạch Thị Phương Dung 7 Trường THCS Nguyễn Huệ
  8. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. 3 1  x  4 3 3 1 3 1 x - = hoặc x - = - 4 3 4 3 3 1 13 + Xét x - =  x = 4 3 12 3 1 5 + Xét x - = -  x = 4 3 12 13 5 Vậy x = hoặc x = 12 12 Ví dụ 3 Tìm x ,biết 3 9  2 x -17 =16 Làm thế nào để đưa về dạng cơ bản đã học ? Từ đó học sinh đã biến đổi đưa về dạng cơ bản đã học 9  2 x = 11 Bài giải 3 9  2 x -17 =16  3 9  2x = 33  9  2x = 11  9-2x =11 hoặc 9-2x = -11  + Xét 9-2x =11  -2x = 2  x= -1 + Xét 9-2x = -11  -2x = - 20  x= 10 Vậy x = -1 hoặc x = 10 1.2 Dạng cơ bản A(x) = B(x) ( trong đó biểu thức B (x) có chưá biến x a, Cách tìm phương pháp giải Cũng đặt câu hỏi gợi mở như trên , học sinh thấy được đẳng thức không xảy ra khi Gv: Bạch Thị Phương Dung 8 Trường THCS Nguyễn Huệ
  9. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. B(x)
  10. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. + Nếu 8 - 2x = -( x-2)  8- 2x = -x +2  x= 6 (Thoả mãn) 10 Vậy x = hoặc x = 6 3 10 Cách 2 :+ Xét 8-2x  0  x  4 ta có 8-2x = x-2  x= (Thoả mãn) 3 + Xét 8-2x < 0  x > 4 ta có -(8-2x) = x-2  x= 6(Thoả mãn) 10 Vậy x = hoặc x = 6 3 Ví dụ 2 Tìm x ,biết x  3 -x = 5 Cách 1 : x  3 -x = 5  x3 = x+5 Với x+5  0  x  -5 ta có x-3 = x+5 hoặc x-3 =-( x+5) + Nếu x-3 = x+5  0x = 8 ( loại ) + Nếu x-3 =-( x+5)  x-3 = -x-5  2x= -2  x=-1 ( Thoả mãn) Vậy x = -1 Cách 2 : x  3 -x = 5 + Xét x-3  0  x  3 ta có x-3 -x= 5  0x= 8 ( loại ) + Xét x-3
  11. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. b, Phương pháp giải Tìm x thoả mãn hai điều kiện : A(x) =0 và B(x)=0 c, Ví dụ Tìm x , biết 1, x  2 + x 2  2 x =0 2, x 2  x + x  1x  2  =0 Bài giải 1, x  2 + x 2  2 x =0  x  2 =0 và x 2  2 x =0 + Xét x  2 =0  x+2=0  x=-2 (1) + Xét x 2  2 x =0  x2 +2x=0  x(x+2) =0  x=0 hoặc x+2 =0  x=-2 (2) Kết hợp (1)và (2)  x=-2 2, x 2  x +  x  1 x  2  =0  x 2  x =0 và  x  1 x  2  =0 + Xét x 2  x =0  x2 + x=0  x(x+1) =0  x=0 hoặc x+1 =0  x=-1 (1) + Xét x  1x  2  =0  ( x+1)(x-2) =0  x+1=0 hoặc x-2 =0  x=-1 hoặc x=2 (2) Kết hợp (1) và (2) ta được x= -1 Lưu ý : Ở dạng này tôi lưu ý cho học sinh phải ghi kết luận giá trị tìm được thì giá trị đó phải thoả mãn hai đẳng thức Ax  =0 và Bx  =0 2. Dạng mở rộng A x  = Bx  hay Ax  - Bx  =0 a, Cách tìm phương pháp giải Gv: Bạch Thị Phương Dung 11 Trường THCS Nguyễn Huệ
  12. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. Trước hết tôi đặt vấn đề để học sinh thấy đây là dạng đặc biệt ( vì đẳng thức luôn xảy ra vì cả hai vế đều không âm) , từ đó các em tìm tòi hướng giải . Cần áp dụng kiến thức nào về giá trị tuyệt đối để bỏ được đấu giá trị tuyệt đối và cần tìm ra phương pháp giải ngắn gọn . Có hai cách giải : Xét các trường hợp xảy ra của A(x) và B(x) (dựa vào định nghĩa )và cách giải dựa vào tính chất 2 số đối nhau có giá trị tuyệt đối bằng nhau để suy ra ngay A(x) =B(x) ; A(x) =-B(x) ( vì ở đây cả hai vế đều không âm do Ax   0 và Bx   0). Để học sinh lựa chọn cách giải nhanh ,gọn ,hợp lí để các em có ý thức tìm tòi trong giải toán và ghi nhớ được b, Phương pháp giải Cách 1 : Xét các trường hợp xảy ra của A(x) và B(x) để phá giá tị tuyệt đối Cách 2 : dựa vào tính chất 2 số đối nhau có giá trị tuyệt đối bằng nhau ta tìm x thoả mãn một trong hai điều kiện A(x) =B(x) hoặc A(x) =-B(x) c, Ví dụ Ví dụ 1 : Tìm x ,biết x  4 = 2x  1  x+4 = 2x-1 hoặc x+4 =-(2x-1) + Xét x+4 = 2x-1  x=5 + Xét x+4 =-(2x-1)  x+4 = -2x +1  x=-1 Vậy x=5 hoặc x=-1 Ví dụ 2: Tìm x , biết x2 + x4 = 8 Bước 1 : Lập bảng xét dấu : Trước hết cần xác định nghiệm của nhị thức : x-2=0  x=2 và x+4 =0  x=-4 Trên bảng xét dấu xếp theo thứ tự giá trị của x phải từ nhỏ đến lớn . Ta có bảng sau: x -4 2 Gv: Bạch Thị Phương Dung 12 Trường THCS Nguyễn Huệ
  13. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. x-2 - - 0 + X+4 + + - 0 Bước 2: Dựa vào bảng xét dấu các trường hợp xảy ra theo các khoảng giá trị của biến .Khi xét các trường hợp xảy ra không được bỏ qua điều kiện để A=0 mà kết hợp với điều kiện để A >0 ( ví dụ -4  x
  14. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. x  1  3 x  3  5 x  6  8 (1) Nếu giải bằng cách 1 sẽ phải xét nhiều trường hợp xảy ra ,dài và mất nhiều thời gian . Còn giải bằng cách hai (lập bảng xét dấu ). x 1 3 6 x-1 + + + - 0 x-3 + - - 0 + x-6 - - - 0 + + Nếu x
  15. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. x-9 - - + 0 + Xét các trường hợp xảy ra , trong đó với x  9 thì đẳng thức trở thành x-4 + x-9 =5 x = 9 thoả mãn x  9 , như vậy nếu không kết hợp với x = 9 để x-9 = 0 mà chỉ xét tớí x > 9 để x-9 > 0 thì sẽ bỏ qua mất giá trị x = 9 Từ những dạng cơ bản đó đưa ra các dạng bài tập mở rộng khác về loại toán này: dạng lồng dấu ,dạng chứa từ ba dấu giá trị tuyệt đối trở lên. + Xét 4  x
  16. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. + Trước hết xem bài có rơi vào dạng đặc biệt không ? ( có đưa về dạng đặc biệt được không). Nếu là dạng đặc biệt A =B ( B  0) hay A = B thì áp dụng tính chất giá trị tuyệt đối (giải bằng phương pháp 1 đã nêu ) không cần xét tới điều kiện của biến . + Khi đã xác định được dạng cụ thể ta nên suy nghĩ cách nào làm nhanh hơn, gọn hơn thì lựa chọn C KẾT LUẬN Khi áp dụng đề tài nghiên cứa này vào giảng dạy cho học sinh lớp tôi dạy .Tôi thấy học sinh làm dạng toán này nhanh gọn hơn.Học sinh không còn lúng trong khi gặp dạng toán này .Cụ thể khi làm phiếu kiểm tra với đề bài như sau: Tìm x, biết : a, 3 x  2 = 5(3đ) b, 2 5 x  4 +8 = 26 (3đ) c, 8 - 4 x  1 = x+3 (4đ) Kết quả nhận được như sau : - học sinh không còn lúng túng về phương pháp giải cho từng loại bài - Biết lựa chọn cách giải nhanh , gọn ,hợp lí - Hầu hết đã trình bày lời giải chặt chẽ Kết quả cụ thể như sau: Giỏi Khá Trung bình Yếu và kém 15% 55% 25% 5% 1.Bài học kinh nghiệm :Khi nghiên cứu đề tài này tôi rút ra một số bài học cho bản thân trong việc bồi dưỡng hai đầu cho học sinh yếu và học sinh khá - giỏi như sau: - Hệ thống kiến thức bổ trợ cho dạng toán sắp dạy . - Hệ thống các phương pháp cơ bản để giải loại toán đó. - Khái quát hoá , tổng hợp hoá từng dạng , từng loại bài tập. - Tìm tòi ,khai thác sâu kiến thức , sưu tầm và tích luỹ nhiều bài toán,sắpxếp Gv: Bạch Thị Phương Dung 16 Trường THCS Nguyễn Huệ theo từng loại ,dạng bài để khi dạy giúp các em nắm vững dạng toán.
  17. Kinh Nghiệm:Giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối_lớp 7. 2.Kiến nghị:Trên đây là một số kinh nghiệm của tôi trong việc dạy học sinh giải một dạng toán. Tôi nghĩ, kinh nghiệm thì không thể không tránh khỏi thiếu sót và cần được chia sẻ. Nên tôi mong có sự ủng hộ, đóng góp ý kiến của các trưởng đầu ngành, của đồng nghiệp, để tôi có được nhiều kinh nghiệm hơn trong việc giảng dạy các em học sinh giải toán. Tôi xin chân thành cảm ơn! Tài liệu tham khảo 1, Sách giáo khoa toán 7 – NXB giáo dục -2007 2, Nâng cao và phát trỉên toán 7 - NXB giáo dục 2003 của Vũ Hữu Bình 3, Toán bồi dưỡng học sinh lớp 7- NXB giáo dục 2006 của Vũ Hữu Bình Gv: Bạch Thị Phương Dung 17 Trường THCS Nguyễn Huệ

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản