TINH DO TIN C A Y CUA SO DO MACH LOGIC<br />
<br />
<br />
TS. NGUYEN DUY VIET<br />
Bg mdn Tin hieu Giao thdng<br />
Khoa Dien - Dim tie<br />
Trudng Dgi hgc Giao thdng Van till<br />
<br />
<br />
<br />
Tom tdt: pj^^^ fj^j^ ,,^, ^,-,,/, ^^;^ ^jj/ ^ J ^^ ^,-^ ^^^ ^e dinh luang duac chdt luang ciia mdt sa<br />
dd mgch logic tren ca sd cdc phdn tic trong maeh diin vd cdc tap tin hiiu ddu vdo cua sa do.<br />
Summary: .Analysing and calculating reliability indices will quantify the quality of a logic<br />
circuit diagram based on the elements in the circuit and the input signals of diagrams.<br />
<br />
<br />
<br />
<br />
I. DAT VAN DE<br />
Mdt sd Idn ciu kien dien tiv su dung trong cac he thdng (dieu khien) la cac sa dd maeh dien,<br />
hdng hdc ciia cac maeh dien nay cd tinh dac trung rieng va se anh hudng den do tin cay ciia ca he<br />
thdng. Cac so' dd maeh td hgp (maeh dien xir ly tin hieu sd) la mdt trong sd cac maeh dien do.<br />
Tinh cac chi sd do tin cay ma cu the la xae suat khdng cd hdng hdc hay xae suat hdng la ndi dung<br />
can thiet khi xae djnh do tin cay chung ciia ca he thdng.<br />
<br />
<br />
IL NOI DUNG<br />
<br />
Thdng thudng khi xem xet den cac phuong phap tinh do tin cay cua cac ddi tugng lien quan<br />
den cac trd ngai dot ngdt. 0 cac so dd vi maeh dien tu cd khoang 50% trong tat ca cac frd ngai<br />
dien ra l f,''.<br />
<br />
<br />
<br />
&<br />
<br />
<br />
1<br />
&<br />
<br />
Hinh 1. Sa do td hap<br />
Cu cho ring sa dd (hinh 1) cd su khdng toan ven n^, tire la hdng d phin tu thu 2 (NO - phii<br />
djnh) dang (0—»1), dat vao bieu thirc (1) vdi gia trj x, = 1, ta nhan dugc ham dugc thuc hien bdi<br />
so dd khdng toan ven:<br />
<br />
f ] = ( x , vl.X3)(x,vx3) = (x, v x , ) ( x , v x , ) (2)<br />
<br />
Khi so sanh cac cdt d bang chan ly (bang 1), thay ro la sir lam viec ciia so' dd toan ven va<br />
khdng toan ven bj phan biet bdi mdt td hgp 011. Khi dd ndi rang, lien quan den td hgp nay, su<br />
khdng toan ven la tdn tai. Ro rang la neu xuat hien d dau vao td hgp 011 la su kien cd xae suit nhd<br />
thi trd ngai ciia so dd do nguyen nhan hdng d phan tu 2 la sir kien cd xae suat nhd.<br />
<br />
Dua ra quan niem ham Idi cpj*. Ham nay tach ra cac tap hgp dau vao ma lien quan den chung,<br />
sir khdng toan ven nf la hien huu.<br />
<br />
Ham ldi cpf dugc ggi la ham nhan gia tri 1 khi va chi khi vdi cac tap dau vao, ham f thuc hien<br />
bdi so do toan ven, va ham f,'' dugc thuc hien bdi sa dd khdng toan ven, chung se nhan dugc cac<br />
gia trj khac biet.<br />
<br />
Bdi cpj* = 1, nlu f ^ f,'', nen<br />
<br />
9,- ' ' - . f e f ' ' = f . f ' ' v f . f , ' ' (3)<br />
<br />
Cdng thuc (3) cho kha nang tim thiy tap hgp cac tap diu vao hdn hgp bang phuong phap dai<br />
sd ma khdng can xay dirng bang chan ly, cac bang nay se cdng kenh doi vdi nhung ham cd sd biln<br />
ldn.<br />
<br />
Xem xet ham ldi cho su khdng toan ven nl, dugc tinh theo cdng thirc (1) va cdng thirc (2):<br />
<br />
<br />
28 Tap chi KHOA HOC GIAO THONG V^N TAI So 31 - 09/2010,<br />
cp^ =f.f;' vf.f^ =(x, vx,X3)(x,vx,).(x, v x 3 ) ( x , v x j v ( x , VX,X3)(X,VX2)(X, VX3)(X,VX,) =<br />
= (X|X, vX|X,X3)(x,X3 v x , x , ) v ( x , x , vx,X3 vx,X2).(X|X, vx,X3 VX2X3) = X|X2X3 ={3}.<br />
Bdng 1<br />
X, x. X.1 f n CPl cp? 9: cp". cp; CP^ cpi cp: cp; CP: cpl CP:<br />
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />
1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1<br />
2 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0<br />
3 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0<br />
4 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0<br />
5 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0<br />
6 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1<br />
7 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1<br />
Tren bang 1 dua ra cac ham ldi cho su khdng toan ven cua tat ca cac phan tu ciia sa dd (hinh<br />
1).<br />
Luc nay dat ra bai toan tinh do tin cay sa dd logic lien quan den hdng hdc khi da bilt:<br />
<br />
- Cau true cua sa dd thuc hien ham f (X|,x,...,x„);<br />
<br />
- Cac xae suat P|,p,...,p,, la xae suat nao dd dthdi diem t bien dau vao Xj = 1 (j = 1, 2, ... , n);<br />
<br />
- Xae suat q" va q' la cac xae suat nao do d thai diem t, dau ra cua phan tu logic thu i xay ra<br />
hdng hdc loai "xae djnh nham tin hieu «0» hoac «1»".<br />
<br />
Yeu cau xae dinh dai lugng P - xae suat khdng cd Idi d dau ra ciia so' dd d thai dilm t.<br />
Gia thiet rang d thai diem t cd the xay ra hdng (cho sir lam viec) ciia chi mdt phan tir va cac<br />
hdng hdc ciia cac phan tir khac nhau la cac su kien dgc lap.<br />
<br />
Gia sir lay cho vi du tren: . •<br />
<br />
p, = 0 , 8 ; p , = 0,5;P3 = 0 , 3 ; q ° = q ° = . . . q « = q ; = . . . = q^= 0,001. ,<br />
<br />
Tinh toan dien ra theo trinh tir sau. - '<br />
<br />
Xae djnh cac xae suat R^ xuat hien cac tap dau vao d thdi dilm t (bang 2). Tit ca cac tap tao<br />
thanh nhdm day dii cac sir kien. Vi vay<br />
<br />
<br />
k-O . . .<br />
<br />
<br />
<br />
Xae djnh xae suat thuc ciia ham: P^ = T^R^<br />
<br />
<br />
Nhu tdng cac xae suat xuat hien cac tap tinh dugc:<br />
<br />
MH»iii.Hil.!J^H.l.J.|<br />
29<br />
i\A../ . P r = R , + R . + R , =0,03 + 0,28 + 0,12 = 0,43<br />
<br />
Pf - cd xae suat nao dd tai thdi diem t d dau ra cua so dd toan ven cd tin hieu «1».<br />
Bdng 2<br />
X, X, X, f Rk<br />
0 0 0 0 0 R o = ( l - P , ) ( l - P 2 ) ( l - P 3 ) = 0'07<br />
<br />
1 0 0 1 1 R , = ( 1 - P , ) ( 1 - P 3 ) P 3 = 0,03<br />
<br />
2 0 1 0 0 R , = ( l - p , ) p , ( l - P 3 ) = 0,07<br />
<br />
3 0 1 1 0 R3=(1-P,)P2P3=0'03<br />
<br />
4 1 0 0 0 R4 = P , ( 1 - P : ) ( 1 - P . ) = 0'28<br />
<br />
5 1 0 1 0 R 5 = P , 0 - P 2 ) P 3 = 0>12<br />
<br />
6 1 1 0 1 R 0 cua tat ca cac phan tu trong so' dd<br />
(baiigl):<br />
<br />
cp;={4,5};(p?={l};cp^={3};cp°={l};<br />
<br />
(p;={4,5};cp^={k6,7};(p^={2,3};(p:={l};<br />
<br />
cp; ={2,3}; (p? ={1,6,7}; cp^ ={0,2,3,4,5}; 9: ={k6,7}.<br />
<br />
Cho mdi khdng toan ven n^ tinh xae suat thuc ham ldi P(cp| ) - xae suat cd dieu kien nao dd<br />
ma d dau ra so' dd xay ra ldi khi cd hdng hdc n^ :<br />
<br />
<br />
<br />
<br />
Trong dd d tdng tham dir cac tap ma d dd cap ham cp^ = 1. •<br />
<br />
P((p|) = R , + R 5 =0,28 + 0,12 = 0,4;<br />
<br />
P((p;^) = R, =0,03;<br />
<br />
P((p;,) = R3 = 0,03;<br />
<br />
P((p^) = R, =0,03;<br />
<br />
p((pl) = R, + R5= 0,28 + 0,12 = 0,4;<br />
<br />
<br />
<br />
Tap chiKHOA HOCGIAO THONG VAN TAI So 31 - 09/2010<br />
30<br />
p((pO) = R^+R^ + R^ =0,03 + 0,28 + 0,12 = 0,43;<br />
<br />
P((p^) = R3 + R3 =0,07 + 0,03 = 0,1;<br />
<br />
P((P:;) = R , = 0 , 0 3 ;<br />
<br />
<br />
P(cp;) = R,+R3 =0,07 + 0,03 = 0,1;<br />
<br />
P((p°) = R , + R , + R , =0,03 + 0,28 + 0,12 = 0,43; '<br />
<br />
p((pi) = R^ + R ^ + R ^ + R ^ + R , = 0,03 + 0,28 + 0,12 = 0,43;<br />
<br />
Xae djnh xae suit Qf la xae suit nao do d thdi diem t xay ra hdng hdc nf va dieu dd dan den<br />
viec xuit hien ldi d dau ra ciia so dd:<br />
<br />
Qf=qf.P(cpf);<br />
<br />
Q|=qi.P((p;) = 0,001.0,4 = 4.10-*;<br />
<br />
o;'=q;'-p(cp: = 0,001.0,03 = 0,3.10-';<br />
<br />
Q;=q;.p(cp; = 0,001.0,03 = 0,3.10"';<br />
<br />
Q;;=qrP(cp: = 0,001.0,03 = 0,3.10';<br />
<br />
Q;=q;.p(cp; = 0,001.0,4 = 4.10"';<br />
<br />
Q^q^P(cp» = 0,001.0,43 = 4,3.10"';<br />
<br />
= 0,001.0,1 = 1.10"';<br />
0l=ql-P(cp:<br />
= 0,001.0,03 = 0,3.10"';<br />
Q:=q:.p(cp:<br />
= 0,001.0,1 = 1.10"';<br />
Q;=q;.p(cp;<br />
= 0,001.0,43 = 4,3.10"';<br />
9: = q^p(cp:<br />
= 0,001.0,57 = 5,7.10^;<br />
Ql = ql-P(cpl<br />
<br />
Q:=q:.p(cp: = 0,001.0,43 = 4,3.10"'.<br />
<br />
Tu viec so sanh cac gia frj nhan dugc cua Q^ rd rang la cac frd ngai ciia cac phan tir khac<br />
<br />
<br />
mmmmmm[mmMmmmkM99/m^ 31<br />
nhau khdng cd cac gia frj nhu nhau vdi each nhin su anh hudng cua chiing din dau ra cua sa do.<br />
Sir anh hudng ldn hon ca cd frd ngai dang 0->I cua phin tu 6 vdi gia frj ldn nhitQ^ =5,7.10"*.<br />
<br />
Luc nay cd the xae djnh xae suit hdng d dau ra so dd frong thdi dilm t:<br />
<br />
<br />
i=l i-1<br />
<br />
<br />
Va xae suat khdng cd hdng hdc d diu ra ciia sa dd tai thdi dilm t (do tin cay tuong quan vdi<br />
hdng hdc)<br />
<br />
P = 1 - Q = 1 - 0,00298 = 0,99702. 3<br />
&<br />
0 cac gia trj nay cua xae suit thay ddi cac<br />
bien dau vao, dai lugng P dac trung cho ciu<br />
triic cua sa dd logic vdi each nhin su bao ve<br />
/<br />
cua nd tir sir anh hudng cua hdng hdc cac phin & ^ 1<br />
&<br />
tu. so dd tuong duong khac se cd gia trj khac<br />
cua P. Vi du sa dd tuong duong dugc dua ra<br />
nhu hinh 2 va su thuc hien theo cdng thuc<br />
f = x,x, V x.XjXj se cd P = 0,99707. X,<br />
<br />
TTinh 2. Sa do td hap tuang duang<br />
<br />
<br />
HI. KET LUAN<br />
<br />
Nhu vay cd the djnh lugng dugc xae suat khdng cd hdng hdc hay xae suat hdng cua mdt so'<br />
dd td hgp bat ky khi biet cau true ciia so' dd thuc hien ham logic, xae suat nao dd d thdi dilm t cua<br />
bien dau vao va xae suat nao do d thai diem t, dau ra cua phan tu logic nao dd xay ra hdng hdc.<br />
Cd thi thay ddi (lam tdt hon) cac dai lugng xae suat khdng cd hdng hdc hay xae suit hdng<br />
ciia mdt maeh dien thuc hien chuc nang nao dd bang each tim ra cac so dd td hgp tuang duong.<br />
<br />
<br />
<br />
<br />
Tai lieu tham khao<br />
[1].flydnuKHHr.B - ripeflBecTHHKH oxKasoB B maenm-s. 3JieKTpoHHOH TexHHKH. - M.: Pajxm H ceaab, 1989<br />
- 9 7 c.<br />
[2]. Nguvin Duy Viet - Cac chi sd an toan cua he thdng dilu khiln tii' xa trong du'dng s5t - Tap chi Khoa hoc<br />
Giao thong Van tai sd 1 - thang 11 - 2002.<br />
[3]. Nguyin Duy Viit - Do tin cay ciia he thdng dilu khiln tin hieu - Tap chi Giao thdng van tai 8/2009.<br />
[4]. Nguyin Duy Viet - Tinh do tin cay ciia he thing khong phuc hoi - Tap chi Khoa hoc Giao thdng Van tai<br />
sd 28-thang 12-2009*<br />
<br />
<br />
32 Tap chi KHOA HQC GIAO THONQ V^N TAI,:;^ S6.31 - Q9/2010<br />