YOMEDIA
ADSENSE
Tổng hợp 250 bài toán vận dụng, vận dụng cao trong đề thi thử THPTQG 2018
32
lượt xem 4
download
lượt xem 4
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Tổng hợp 250 bài toán vận dụng, vận dụng cao trong đề thi thử THPTQG 2018 giúp các em học sinh có thêm tư liệu phục vụ công tác học tập. Mời các bạn cùng tham khảo tài liệu để nắm chi tiết nội dung.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tổng hợp 250 bài toán vận dụng, vận dụng cao trong đề thi thử THPTQG 2018
- TỔNG HỢP 250 BÀI TOÁN VD-VDC TRONG ĐỀ THI THỬ 2018 Ths: Nguyễn Đức Kiên sưu tầm và tổng hợp Rất nhiều tài liệu hay có trong: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ z1 z2 z3 0 2 2 2 Câu 1: Cho 3 số phức z1 ; z2 ; z3 thỏa 2 2 . Tính A z1 z2 z2 z3 z3 z1 z1 z2 z3 3 2 2 8 8 3 A. B. 2 2 C. D. 3 3 3 z1 z2 z3 2 2 2 8 Lời giải: Ta có: z1 z3 z2 A z1 z2 z3 . Chọn C. z z z 3 2 3 1 Câu 2: Cho một cấp số cộng un có u1 1 và tổng của 100 số hạng đầu tiên 24850 . Tính giá trị của 1 1 1 1 biểu thức S ... ? u1u 2 u2 u3 u 48u49 u 49 u50 4 9 49 A. S 123 B. S C. S D. S 23 246 246 Lời giải: Ta có: u100 u1 497 u100 496 1 99d d 5 u50 246 . u2 u1 u3 u2 u u48 u50 u49 1 1 1 49 Lại có: 5S ... 49 1 S . u1u 2 u2 u3 u 48u49 u 49 u50 u1 u50 246 246 Câu 3: Cho số phức z 2017 1 1 . Gọi P z . Tính A 2017. max P 2017. min P . A. A 2017.2016 2 B. A 2017.2017 3 C. A 2017.2017 2 D. A 2017 2017 Lời giải: Ta có : max P max z 0 max P 2017 max z max z 2017 . 2017 Mặt khác ta cũng có: min P z 0 min P 2017 min z min z 2017 . Gọi z 2017 a bi a , b Tập hợp điểm biểu diễn số phức z 2017 là đường tròn tâm I 0;1 có bán 2017 max P 2 max P 2017.2017 2 kính R 1 2017 A 2017.2017 2 . Chọn C. min P 0 min P 0 Câu 4: Xét số phức z thỏa 2 z 1 3 z i 2 2 . Mệnh đề nào dưới đây đúng: 3 1 1 3 A. z 2 B. z 2 C. z D. z 2 2 2 2 Lời giải: Ta xét các điểm A 1;0 , B 0;1 và M x; y với M là điểm biểu diễn số phức z trong mặt 2 2 phẳng phức. Ta có : 2 z 1 3 z i 2 x 1 y 2 3 x 2 y 1 2MA 3MB . Ta có : 2MA 3MB 2 MA MB MB 2 AB MB 2 2 MB 2 2 . 2 z 1 3 z i 2 2 . Mà theo giả thuyết ta có : 2 z 1 3 z i 2 2 . M AB Vậy 2 z 1 3 z i 2 2 . Dấu " " xảy ra khi và chỉ khi M B M 0;1 z 1 MB 0 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 1/96
- 4 z 1 Câu 5: Gọi z1 , z2 , z3 , z4 là nghiệm của phương trình 1 . Tính giá trị của biểu thức: 2z i P z12 1 z22 1 z32 1 z 42 1 . 19 17 A. 1. B. . C. . D. 2. 7 9 4 4 2 2 2 2 Lời giải: Ta có: z 1 2 z i z 1 2 z i z 1 2 z i 0 2 2 z 1 2 z i z 1 2 z i z 1 2 z i 0 2 3 z 1 i z 1 i 5 z 2 4i z 0 1 i 2 4i 17 z1 ; z2 1 i; z3 0; z 4 P . Chọn C. 3 5 9 2 f 1 f 3 ... f 2 n 1 Câu 6: Cho f n n 2 n 1 1 n * và đặt un . Tìm số nguyên dương f 2 f 4 ... f 2n 10239 n nhỏ nhất sao cho log 2 un un ? 1024 A. n 23 B. n 29 C. n 33 D. n 21 2 2 2 Lời giải: Ta có: f n n n 1 1 n 1 n 1 1 n . 2 * Đến đây ta dễ dàng có: un 1 1 2 2 2 1 32 1 42 1 ... 2n 1 1 2n 1 2 2 1 . 1 4 1 5 1 ... 2n 1 2n 1 1 2n 2 2 2 2 1 3 2 2 2 2 2n 1 10239 1 1 1 Ta có: log 2 un un log 2 un n 23 . Chọn A. 1024 1024 1024 1024 Câu 7: Cho số phức z thỏa mãn điều kiện z 2 2 z 5 z 1 2i z 3i 1 . Tìm giá trị nhỏ nhất của module z 2 2i . 5 3 A. 1. B. 5. C. . D. . 2 2 Lời giải: Ta có : z 2 2 z 5 z 1 2i z 3i 1 z 1 2i 0 z 1 2i z 1 2i z 1 2i z 3i 1 . z 1 2i z 3i 1 Trường hợp 1: z 1 2i 0 z 1 2i z 2 2i 1 . 1 Trường hợp 2: z 1 2i z 3i 1 b với z a bi a, b . 2 1 3 2 9 3 z 2 2i a i 2 2i a 2 i z 2 2i a 2 . Chọn A. 2 2 4 2 Câu 8: Cho số phức z thỏa mãn điều kiện z 1 2i 2 2 . Tính giá trị lớn nhất của biểu thức P a z 1 b z 3 4i với a, b là số thực dương. A. a2 b2 . B. 2a 2 2b2 . C. 4 2a 2 2b 2 . D. a 2 b 2 . Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 2/96
- Lời giải: Ta gọi z x yi x, y . Gọi M x; y là điểm biểu diễn số phức z trong mặt phẳng phức . Trong mặt phẳng phức xét các điểm A 1; 0 , B 3; 4 . Khi đó AB 4 2. MA2 MB 2 AB 2 py ta go P bMB 2 2 2 Ta luôn có : MB AB 0 . P aMA bMB a b2 2.P.b P2 2 1 MB 2 MB 2 AB 2 0 * . a a a b2 2 b2 P2 2 Để phương trình * có nghiệm thì: '* 0 2 P 2 1 2 AB 0 a a a P 2 b2 2 2 1 AB 2 0 P 2 AB 2 a 2 b 2 P AB a 2 b 2 4 2a 2 2b 2 . Chọn C. a a Câu 9: Cho hàm số y f x thỏa mãn điều kiện f 2 1 2 x x f 3 1 x . Lập phương trình tiếp tuyến với đồ thị hàm số y f x tại điểm có hoành độ x 1? 1 6 1 6 1 6 1 6 A. y x B. y x C. y x D. y x 7 7 7 7 7 7 7 7 Lời giải: Ta xét x 0 ta được f 1 f 1 f 1 f 1 1 0 f 1 0 f 1 1 . 2 3 2 Lại có 4 f 1 2 x f 1 2 x 1 3 f 2 1 x f 1 x thay x 0 ta có 4 f 1 f 1 1 3 f 2 1 f 1 . Trường hợp 1: Nếu f 1 0 thay vào ta thấy 0 1 vô lý. 1 Trường hợp 2: Nếu f 1 1 thì thay vào 4 f 1 1 3 f 1 f 1 . 7 1 1 6 Vậy phương trình tiếp tuyến cần tìm là: y x 1 1 x . 7 7 7 Câu 10: Cho hàm số y 2 x3 3x 2 1 có đồ thị C . Xét điểm A1 có hoành độ x1 1 thuộc C . Tiếp tuyến của C tại A1 cắt C tại điểm thứ hai A2 A1 có hoành độ x2 . Tiếp tuyến của C tại A2 cắt C tại điểm thứ hai A3 A2 có hoành độ x3 . Cứ tiếp tục như thế, tiếp tuyến của C tại An 1 cắt C tại điểm thứ hai An An 1 có hoành độ xn . Tìm giá trị nhỏ nhất của n để xn 5100 . A. 235 B. 234 C. 118 D. 117 Lời giải: Ta có: xk a Tiếp tuyến tại Ak có phương trình hoành độ giao điểm: 3 2 x3 3x 2 1 2a3 3a 2 1 6a 2 6a x a x a 2 x 4a 3 0 xk 1 2 xk 2 2 1 x1 1 x1 2 1 n 4 Vậy 3 xn . 2 . Xét 1 xn 1 2 xn 2 x 2 4 1 2 2 1 n 1 1 1 Do đó xn . 2 5100 . Chọn n 2 k 1 .4k . 2 5100 4 k 1 2.5100 4 2 4 2 4 k 2.5100 1 k log 4 2.5100 1 Chọn k 117 n 235 . Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 3/96
- Câu 11: Trong không gian với hệ tọa độ Oxyz , cho ba điểm A 1; 2; 1 , M 2; 4;1 , N 1;5;3 . Tìm tọa độ điểm C nằm trên mặt phẳng P : x z 27 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM , AN để tứ giác ABCD là hình thoi. A. C 6; 17; 21 B. C 20;15;7 C. C 6; 21; 21 D. C 18; 7;9 Lời giải: C là giao của phân giác trong AMN với P . Ta có: AM 3; AN 5 . EM AM 3 Gọi E là giao điểm phân giác trong AMN và MN . Ta có: EN AN 5 x 1 5t 13 35 7 5EM 3EN 0 E ; ; AE : y 2 19t C 6; 21; 21 . 8 8 4 z 1 22t Câu 12: Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng P : x y z 3 0 và tọa độ hai điểm A 1;1;1 , B 3; 3; 3 . Mặt cầu S đi qua hai điểm A, B và tiếp xúc với P tại điểm C . Biết rằng C luôn thuộc một đường tròn cố định. Tính bán kính của đường tròn đó? 2 33 2 11 A. R 4 B. R C. R D. R 6 3 3 Lời giải: Ta dễ dàng tìm được tọa độ điểm D 3;3;3 là giao B điểm của AB và P . Do đó theo tính chất của phương tích ta được: DA.DB DI 2 R 2 . Mặt khác vì DC là tiếp A I tuyến của mặt cầu S cho nên DC 2 DI 2 R 2 . Do vậy DC 2 DA.DB 36 cho nên DC 6 (Là một giá trị không đổi). P D C Vậy C luôn thuộc một đường tròn cố định tâm D với bán kính R 6 . Chọn D. Câu 13: Xét các số thực với a 0, b 0 sao cho phương trình ax3 x 2 b 0 có ít nhất hai nghiệm thực. Giá trị lớn nhất của biểu thức a 2b bằng: 4 15 27 4 A. B. C. D. 27 4 4 15 2 Lời giải: y ' 0 x 0 và x . Từ đây ta có tọa độ 2 điểm cực trị của đồ thị hàm số là A 0; b và 3a 2 4 4 B ;b 2 . Để có ít nhất 2 giao điểm với trục hoành thì y A . yB 0 b b 0 3a 27 a 27a 2 4 27 a 2b 4 b 0 a 2b (Vì b 0 ). Chọn A. 27 z 2i Câu 14: Cho số phức z a bi a , b thỏa mãn là số thuần ảo. Khi số phức z có môđun lớn z 2 nhất. Tính giá trị biểu thức P a b . A. P 0 B. P 4 C. P 2 2 1 D. P 1 3 2 z 2i a b 2 i a b 2 i a 2 bi Lời giải: Ta có: 2 là số thuần ảo z 2 a 2 bi a 2 b2 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 4/96
- 2 2 a 1 2 sin a a 2 b b 2 0 a 2 2a b 2 2b 0 a 1 b 1 2 b 1 2 cos 2 Ta có: a 2 b 2 2 a b z 4 2 2 sin cos 4 2 2. 12 12 8 2 z max 2 2 khi sin cos a b 4 . 2 Câu 15: Cho khối tứ diện đều ABCD cạnh a . Gọi E là điểm đối xứng của A qua D . Mặt phẳng qua CE và vuông góc với mặt phẳng ABD cắt cạnh AB tại điểm F . Tính thể tích V của khối tứ diện AECF . 2a3 2a3 2a3 2a3 A. V B. V C. V D. V 30 60 40 15 HB FA EM FA 3 FA 2 Lời giải: Áp dụng định lý Menelaus: . . 1 2. . 1 HM FB EA FB 4 FB 3 2 S AE AF 4 4 4 a 3 2 a3 2 AF AB và AE 2 AD . Ta có: AEF . VAECF VABCD . . 5 SABD AD AB 5 5 5 12 15 Câu 16: Xét các số phức z a bi a, b thỏa mãn z 2 3i 2 . Tính P a b khi z 2 5i z 6 3i đạt giá trị lớn nhất. A. P 3 B. P 3 C. P 7 D. P 7 2 2 Lời giải: Do z 2 3i 2 a 2 b 3 2 . Suy ra M C có tâm I 2; 3 và bán kính R 2 . Gọi A 2;5 , B 6; 3 , I 2;1 . Suy ra P MA MB 2 MA2 MB 2 AB 2 Mặt khác ta có MA2 MB 2 2MI 2 I là hình chiếu vuông góc của M . Suy ra PMax MI Max 2 trên AB M , I , I thẳng hàng.Vì ta thấy IA IB MA MB nên xảy ra dấu =. Ta có IM a 2; b 3 , II 4; 4 nên AB M , I , I thẳng hàng 4 a 2 4 b 3 a b 1 . a 2 2 b 3 2 2 a 3; b 4 Tọa độ M là nghiệm của hệ a b 1 a 1; b 2 M 3; 4 P MA MB 2 82 Mặt khác . Vậyđể PMax thì M 3; 4 Suy ra a b 7 . M 1; 2 P MA MB 2 50 Câu 17: Có bao nhiêu số nguyên m để phương trình ln m 2sin x ln m 3sin x sin x có nghiệm? A. 3 B. 4 C. 5 D. 6 Lời giải: m 2sin x ln m 3sin x ln m 2sin x ln m 3sin x m 3sin x ln m 3sin x a ln a b ln b a b m 2sin x ln m 3sin x m 3sin x ln m 3sin x sin x m 3sin x esin x m esin x 3sin x . Xét hàm số f t et 3t với t 1;1 . sin x 1 max e 3sin x f 1 3 1 Vì f t e 3 0 t 1;1 nên: t e e 3 m 3 . Chọn B. min esin x 3sin x f 1 e 3 e Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 5/96
- Câu 18: Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng P : x 2 y z 4 0 . Có tất cả bao nhiêu mặt cầu có tâm nằm trên mặt phẳng P và tiếp xúc với ba trục tọa độ x ' Ox, y ' Oy, z ' Oz ? A. 8 mặt cầu B. 4 mặt cầu C. 3 mặt cầu D. 1 mặt cầu Lời giải: Gọi tâm I a, b, c , ta có a 2b c 4 . Vì d I , Ox d I , Oy d I , Oz a 2 b2 b 2 c 2 c 2 a 2 a b c Nếu a m, b m, c m 2m 4 m 2 I 2; 2; 2 Nếu a m, b m, c m m 1 I 1;1;1 Nếu a m, b m, c m 0 4 (Loại) Nếu a m, b m, c m 2m 4 I 2; 2; 2 Vậy có tất cả 3 mặt cầu thỏa mãn điều kiện của bài toán đưa ra. Câu 19: Cho hàm số y f x có đạo hàm liên tục trên 1;1 đồng thời thỏa mãn điều kiện f 2 x 1 1 1 với mọi x 1;1 và f x dx 0 . Tìm giá trị nhỏ nhất của 2 x f x dx ? 1 1 1 1 2 A. B. C. D. 1 2 4 3 1 1 1 1 Lời giải: Ta đặt I x 2 f x dx I x a f x dx 2 x 2 a f x dx x 2 a dx a . 1 1 1 1 1 Do đó ta suy ra I min x 2 a dx . Đến đây ta chia bài toán thành 3 trường hợp như sau: a 1 1 1 2 2 Trường hợp 1: Nếu a 0 thì min x 2 a dx min x 2 a dx min 2a . a 1 a0 1 a0 3 3 1 1 2 4 Trường hợp 2: Nếu a 1 thì min x 2 a dx min a x 2 dx min 2a . a a 1 a 1 3 3 1 1 1 a a 1 Trường hợp 3: Nếu a 0;1 thì min x 2 a dx min x 2 a dx a x 2 dx x 2 a dx a a 0;1 1 1 a a 1 x 3 a x3 a x3 1 2 min x a dx min ax ax ax a a 0;1 1 3 1 3 a 3 a 1 8a a 2 1 1 min x 2 a dx min 2a khi và chỉ khi a . a a 0;1 1 3 3 2 4 1 1 1 1 Kết luận: Như vậy min x 2 a dx do đó I min I . a 2 2 2 1 Câu 20: Cho hàm số y f x có đạo hàm liên tục trên 0;1 đồng thời thỏa mãn f x 8;8 với 1 1 mọi x 0;1 và xf x dx 3 . Tìm giá trị lớn nhất của 3 x f x dx ? 0 0 31 4 17 A. 2 B. C. D. 16 3 8 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 6/96
- 1 1 1 x ax f x dx x 3 ax f x dx 3 3 Lời giải: Ta đặt I x f x dx khi đó: I 3a 0 0 0 1 1 1 I 3a 8 x3 ax dx a I 3a 8 x 3 ax dx a I min 3a 8 x 3 ax dx . a 0 0 0 1 1 Trường hợp 1: Nếu a 0 khi đó min 3a 8 x3 ax dx min 3a 8 x 3 ax dx min 2 a 2 a 0 a 0 0 a 0 1 1 Trường hợp 2: Nếu a 1 khi đó min 3a 8 x3 ax dx min 3a 8 ax x3 dx min 7 a 2 5 a 0 a 1 0 a 1 Trường hợp 3: Nếu a 0;1 khi đó ta có đánh giá sau: 1 a 1 31 min 3a 8 x3 ax dx min 3a 8 ax x3 dx 8 x3 ax dx min 4a 2 a 2 a a 0;1 a0;1 16 0 0 a 1 31 31 1 31 3 Kết luận: Vậy min 3a 8 x3 ax dx I . Đẳng thức xảy ra khi a ; I 3a . a 8 12 8 0 16 16 ĐÁP ÁN CHI TIẾT BÀI TẬP VỀ NHÀ 20 10 1 1 Câu 21: Sau khi khai triển và rút gọn, biểu thức x 2 x3 có bao nhiêu số hạng? x x A. 27 B. 28 C. 29 D. 32 20 20 10 10 1 1 k i Lời giải: Ta có: x 2 x3 C20k 1 x 20 3k C10i 1 x30 4 i . Khai triển này bao gồm x x k 0 i 0 tất cả 21 11 32 số hạng. Tuy nhiên ta xét các số hạng bị trùng lũy thừa của nhau. Ta có: 20 3k 30 4i 4i 3k 10 do đó k phải là số chẵn nhưng không chia hết cho 4. Ta có bảng: k 2 6 10 14 18 i 4 7 10 13 (L) 16 (L) Vậy có 3 cặp số hạng sau khi khai triển trùng lũy thừa của nhau. Chọn C. Câu 22: Cho hàm số y f x có đạo hàm cấp hai f x liên tục trên đoạn 0;1 đồng thời thỏa mãn điều kiện f 0 f 1 1; f 0 2018 . Mệnh đề nào sau đây là đúng? 1 1 A. f x 1 x dx 2018 B. f x 1 x dx 2018 0 0 1 1 C. f x 1 x dx 1 0 D. f x 1 x dx 1 0 1 1 1 1 Lời giải: Ta có: f x 1 x dx 1 x df x f x 1 x f x dx 2018 . Chọn A. 0 0 0 0 Câu 23: Cho phương trình 8x m22 x 1 2m 2 1 2 x m m3 0 . Biết tập hợp các giá trị thực của tham số m sao cho phương trình có ba nghiệm phân biệt là a; b . Tính S ab ? 2 4 3 2 3 A. S B. S C. S D. S 3 3 2 3 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 7/96
- Lời giải: Ta đặt t 2 x khi đó phương trình có dạng t m t 2 mt m 2 1 0 . Do đó điều kiện cần và m 0; S m 0 2 đủ là 3 nghiệm t 0 cho nên: P m 2 1 0 1 m . Chọn A. 3 Δ m 4 m 1 0 2 2 Câu 24: Cho hàm số y f x có bảng biến thiên như hình vẽ dưới đây: Hàm số y f x 2 2 nghịch biến trên khoảng nào dưới đây? A. 2; 0 B. 2; C. 0; 2 D. ; 2 x 0 x 2 2 2 x 0; 2 x2 f x 2 0 2 2 0 x 2 2 Lời giải: Ta có: y 2 xf x 2 0 2 x 4 . 2 x 0 x 0; x 2 2 2 x 0 2 f x 2 0 2 2 x 2 0 Do vậy hàm số y f x 2 2 đồng biến trên các khoảng ; 4 , 2; 0 , 2; 2 và nghịch biến trên các khoảng 4; 2 , 0; 2 , 2; . Chọn B. 3 Câu 25: Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y x 2m 1 x 2 3m x 5 có ba điểm cực trị? 1 1 A. ; B. 0; 1; C. ; 0 D. 1; 4 4 3 Lời giải: (Học sinh tự vẽ hình tưởng tượng) Hàm số y x 2m 1 x 2 3m x 5 có ba điểm cực trị khi và chỉ khi hàm số y x3 2m 1 x 2 3mx 5 có hai điểm cực trị không âm. Δ 4m2 5m 1 0 1 0m Vậy phương trình 3 x 2 2m 1 x 3m 0 khi: 2 2 2m 1 4 . Chọn B. S 0; P m 0 m 1 3 Câu 26: Cho hàm số y f x có đồ thị như hình vẽ bên và có đạo hàm f x liên tục trên . Đường thẳng trong hình vẽ bên là tiếp tuyến của đồ thị hàm số tại gốc tọa độ. Gọi m là giá trị nhỏ nhất của hàm số y f x . Mệnh đề nào sau đây là đúng? A. m 2 B. 2 m 0 C. 0 m 2 D. m 2 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 8/96
- Lời giải: Dựa vào đồ thị hàm số trên ta thấy rằng x 0 chính là nghiệm của phương trình f x 0 và là điểm cực trị của hàm số y f x . Mặt khác hàm số y f x có dạng hàm số bậc 2 với hệ số bậc cao nhất dương. Khi đó giá trị nhỏ nhất này chính là f 0 đồng thời là hệ số góc của tiếp tuyến tại điểm có hoành độ x 0 . Dựa vào đồ thị ta thấy tiếp tuyến có dạng y ax và đi qua điểm có tọa độ xấp xỉ 1; 2, 2 cho nên ta suy ra 2, 2 a f 0 m . Chọn A. 3 Câu 27: Cho dãy số an thỏa mãn điều kiện a1 1; 5an1 an 1 với mọi n . Tìm số nguyên 3n 2 dương n 1 nhỏ nhất để an ? A. n 39 B. n 41 C. n 49 D. n 123 3 3 3 Lời giải: Ta có: 5an an1 1 ; 5an1 an2 1 ; ...5a2 a1 1 . 3n 1 3n 4 5 3 3 3 8.11.14... 3n 1 3n 2 3n 2 Nhân vế với vế ta được: 5an a1 1 1 .... 1 . 3n 1 3n 4 5 5.8.11.... 3n 4 3n 1 5 Khi đó ta có công thức tổng quát an log 5 3n 2 . Chọn B. Chú ý: Tới đoạn này sử dụng lệnh CALC là nhanh nhất. Nhưng nếu bài toán không cho trước đáp số có thể sử dụng Bảng TABLE để truy tìm giá trị nguyên dương n 1 nhỏ nhất để an . z2 z1 Câu 28: Cho số thực z1 và số phức z2 thỏa mãn z2 2i 1 và là số thực. Gọi M , m lần lượt là 1 i giá trị lớn nhất và nhỏ nhất của z1 z2 . Tính giá trị của biểu thức T M m ? A. T 4 B. T 4 2 C. T 3 2 1 D. T 2 3 z z a b ci i 1 Lời giải: Ta đặt z1 a, z2 b ci khi đó: 2 1 c b a đồng thời ta cũng 1 i 2 2 có z2 2i 1 b 2 c 2 1 . Do vậy z1 z2 a b ci c ci c 2. 2 2 Vì b2 c 2 1 c 2 1 c 3 1 c 3 do đó z1 z2 c 2 2;3 2 T 4 2 . Câu 29: Cho khối tứ diện ABCD có BC 3, CD 4, ABC BCD ADC 900 . Góc giữa hai đường thẳng AD và BC bằng 600 . Tính cosin góc giữa hai mặt phẳng ABC và ACD ? 2 43 43 A. B. 43 86 4 43 43 C. D. 43 43 Lời giải: Ta dựng AE BCD và dễ dàng chứng minh được BCDE là hình chữ nhật. Khi đó AD, BC ADE 600 khi đó ta suy ra AE 3 3 VABCD 6 3 . Mặt khác ta chú ý công thức tính nhanh: 2 S ABC S ACD sin ABC , ACD VABCD 3 AC Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 9/96
- Do vậy đặt ABC , ACD α và theo định lý Pythagoras ta suy ra AB 43; AD 6; AC 2 13 . 2 1 2 43 Khi đó: 6 3 3 43 12 sin α cos α . 6 13 2 43 Câu 30: Tìm giá trị lớn nhất của P z 2 z z 2 z 1 với z là số phức thỏa mãn z 1 . 13 9 13 11 A. max P B. max P C. max P D. max P 4 4 3 3 Lời giải: Ta có z 2 z 2 z 2 z z2 z 2 z z 2 2x z 2 z 2 2 x . 2 2 2 2 2 2 z z 1 z z 1 z z 1 1 2 z z z z z z 1 2 x 1 13 7 Từ đây ta tìm được max P max 1;1 2 2x 2 x 1 4 x . 8 Câu 31: Cho số phức z thỏa mãn z m 2 2m 5 với m là số thực. biết rằng tập hợp điểm của số phức w 3 4i z 2i là đường tròn. Tính bán kính R nhỏ nhất của đường tròn đó. A. Rmin 5 B. Rmin 20 C. Rmin 4 D. Rmin 25 Lời giải: Ta có: 3 4i z 5 m 2 2m 5 w 2i 5 m 2 2m 5 . Vậy R 5 m2 2m 5 20 . Câu 32: Có bao nhiêu giá trị của m để tồn tại duy nhất số phức z thỏa mãn z.z 1 và z 3 i m . A. 0 B. 1 C. 2 D. 3 Lời giải: Gọi z x yi , ( x, y R ) ,ta có hệ: 2 2 x y 1(1) 2 2 2 ( x 3) ( y 1) m ( m 0) Ta thấy m 0 z 3 i không thỏa mãn z.z 1 suy ra m 0 . Xét trong hệ tọa độ Oxy tập hợp các điểm thỏa mãn (1) là đường tròn (C1 ) có O(0; 0), R1 1 , tập hợp các điểm thỏa mãn (2) là đường tròn (C2 ) tâm I ( 3; 1), R2 m ,ta thấy OI 2 R1 suy ra I nằm ngoài (C1 ) . Để có duy nhất số phức z thì hệ có nghiệm duy nhất khi đó tương đương với (C1 ), (C2 ) tiếp xúc ngoài và tiếp xúc trong, điều điều này xảy ra khi OI R1 R2 m 1 2 m 1 hoặc R2 R1 OI m 1 2 3 . Câu 33: Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M và M . Số phức z 4 3i và số phức liên hợp của nó có điểm biểu diễn là N và N . Biết rằng MM N N là một hình chữ nhật. Tìm giá trị nhỏ nhất của z 4i 5 . 5 2 1 4 A. . B. . C. . D. . 34 5 2 13 Lời giải: Gỉa sử z a bi ( a, b ) được biểu diễn bởi điểm M a; b Khi đó số phức liên hợp của z là z a bi được biểu diễn bởi điểm M a; b Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 10/96
- Ta có: z 4 3i a bi 4 3i 4a 3ai 4bi 3b 4a 3b 3a 4b i do đó số phức z 4 3i được biểu diễn bởi điểm N 4a 3b;3a 4b Khi đó điểm biểu diễn số phức liên hợp của số phức z 4 3i là N 4a 3b; 3a 4b MM a a; b b MM 0; 2b Ta có: NN 4 a 3b 4a 3b; 3a 4b 3a 4b NN 0; 6a 8b MN 4 a 3b a;3a 4b b MN 3a 3b;3a 3b 2b 6a 8b MM NN 0 Vì MM N N là một hình chữ nhật nên ta có: a, b 0 a b MM .MN 0 2b 3a 3b 0 2 9 1 1 b 5 b 42 2 b 2 z b bi z 4i 5 b 5 b 4 i 2 2 2 1 9 9 9 Vậy z 4i 5 min b hay z i . 2 2 2 2 Câu 34: Cho số phức z m 2 m 2 1 i với m . Gọi C là tập hợp các điểm biểu diễn số phức z trong mặt phẳng tọa độ. Tính diện tích hình phẳng giới hạn bởi C và Ox . 4 32 8 A. 1. B.. C. . D. . 3 3 3 Lời giải: Gọi M x; y là điểm biểu diễn số phức z trong mặt phẳng tọa độ. x m 2 m x 2 m x 2 Vì z m 2 m2 1 i 2 2 2 y m 1 y m 1 y x 2 1 2 Suy ra tập hợp các điểm biểu diễn số phức là đường cong C với y x 2 1 2 x 3 Xét phương trình hoành độ giao điểm của C và Ox ta có : x 2 1 0 x 2 4 x 3 0 x 1 1 2 4 Khi đó diện tích hình phẳng giới hạn bởi C và Ox là S ( x 2) 1 dx . Chọn B. 3 3 10 Câu 35: Xét số phức z thỏa mãn 1 2i z 2 i. Mệnh đề nào dưới đây đúng? z 3 1 1 3 A. z 2. B. z 2. C. z . D. z . 2 2 2 2 10 10 2 2 Lời giải: Ta có: z 2 i 2 z 1 z z z 2 2 z 1 z 1 . Chọn D. Câu 36: Cho hai số phức z1 , z 2 thỏa mãn z1 z2 8 6i và z1 z2 2 . Tìm giá trị lớn nhất của P z1 z2 . A. P 4 6. B. P 2 26. C. P 5 3 5. D. P 32 3 2. Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 11/96
- z a bi z1 z2 a c b d i a c b d i 8 6i Lời giải: Gọi 1 a, b, c, d z1 z2 a c b d i 2 2 z2 c di a c b d 2 z z a c 2 b d 2 8 6i 2 2 1 2 a c b d 100 2 2 2 2 a c b d 4 a c b d 4 2 2 2 2 a c b d a c b d 104 a 2 b 2 c 2 d 2 52 B .C .S Mặt khác P z1 z2 a 2 b 2 c 2 d 2 1 2 12 a 2 b 2 c 2 d 2 2.52 2 26. Câu 37: Cho số phức z thỏa mãn z 8 z 8 20 . Gọi m, n lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của z . Tính P m n . A. P 16. B. P 10 2. C. P 17. D. P 5 10. Lời giải: Gọi z x yi x, y và M x, y là điểm biểu diễn của số phức z trong mặt phẳng 2 2 2 phức. Xét các điểm F1 8; 0 , F2 8; 0 . Ta có : MF 1 8 x y x 8 y2 z 8 . 2 2 2 MF 2 8 x y x 8 y2 z 8 . 2 2 z 8 z 8 20 x 8 y2 x 8 y 2 20 MF1 MF2 20 x2 y 2 Do MF1 MF2 F1F2 Tập hợp điểm M là một elip có dạng 1 a 2 b2 2 2 a 20 a 100 x2 y 2 max z 10 2 2 2 1 m n 16 . c 8 b a c 36 100 36 min z 6 Câu 38: Cho hàm số y f x liên tục trên 0;1 đồng thời thỏa mãn các điều kiện sau: max f x 6 0;1 1 1 2 3 và x f x dx 0 . Giá trị lớn nhất của tích phân x f x dx bằng bao nhiêu? 0 0 A. 1 B. 3 2 3 4 C. 2 3 4 D. 1 8 4 16 24 1 Lời giải: Ta có với mọi số thực a thì ax 2 f x dx 0 do đó: 0 1 1 1 1 3 x f x dx x 3 ax 2 f x dx x3 ax 2 f x dx 6 x 3 ax 2 dx a 0 0 0 0 1 1 3 3 Do đó: x f x dx min 6 x ax 2 dx min g a . Tới đây ta chia các trường hợp sau: a a 0 0 Trường hợp 1: Nếu a 0 thì x 3 ax 2 x 2 x a 0 x 0;1 . Khi đó: 1 1 1 a 3 g a 6 x 3 ax 2 dx 6 x3 ax 2 dx 6 min g a 0 0 4 3 a 0 2 Trường hợp 2: Nếu a 1 thì x 3 ax 2 x 2 x a 0 x 0;1 . Khi đó: Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 12/96
- 1 1 a 1 1 g a 6 x 3 ax 2 dx 6 ax 2 x 3dx 6 min g a 0 0 3 4 a 1 2 1 a 1 2a 4 4a 3 Trường hợp 3: Nếu a 0;1 thì f a 6 x ax dx 6 ax x dx x3 ax 2 dx 3 2 2 3 . 0 0 a 2 Ta tìm được min g a min 3 2a 4 4a 3 3 2 4 1 3 vậy min g a 3 2 3 4 . a 0;1 a 0;1 a 2 4 2 2 4 1 1 3 2 3 4 max 1 3 2 3 4 . x f x dx min g a x f x dx x f x dx 3 3 3 Do vậy: a 4 0;1 4 0 0 0 Câu 39: Cho hàm số y f x có đạo hàm liên tục trên đoạn 0;1 thỏa mãn 3 f x xf ' x x 2018 với 1 mọi x 0;1 . Giá trị nhỏ nhất của tích phân f x dx bằng: 0 1 1 1 1 A. B. C. D. 2021 2022 2018 2021 2018 2019 2019 2021 Lời giải: Ta có: 3 f x x. f ' x x 3 x f x x f ' x x 2020 2018 2 3 t t t 2018 x3 f x x 2020 x3 f x dx x 2020 dx t 0;1 f t 0 0 2021 1 1 1 x 2018 1 1 Khi đó f x dx dx . Giá trị nhỏ nhất của tích phân f x dx là . 0 0 2021 2019.2021 0 2019.2021 1 2 1 Câu 40: Cho hàm số f x có đạo hàm liên tục trên 0;1 thỏa mãn f 1 0, f x dx và 0 11 1 1 4 1 x f x dx 55 . Tích 0 phân f x dx bằng 0 1 1 1 1 A. B. C. D. 7 7 55 11 1 1 1 5 4 x5 x 1 1 Lời giải: x f x dx f x f x dx . Suy ra 5 x f x dx 11 . Hơn nữa ta dễ dàng tính 0 5 0 0 5 0 1 1 1 1 1 5 2 1 2 2 2 được x dx 11 . Do đó f x dx 2 x 5 f x dx x5 dx 0 f x x5 dx 0 . 0 0 0 0 0 1 1 1 6 1 x6 1 1 Suy ra f x x 5 , do đó f x x C . Vì f 1 0 nên C . Vậy f x dx dx . 6 6 0 0 6 7 1 2 3 Câu 41: Cho hàm số f x có đạo hàm liên tục trên 0;1 thỏa mãn f 1 0, f x dx 2ln 2 0 2 1 1 f x 3 và x 1 0 2 dx 2ln 2 2 . Tích phân f x dx bằng 0 1 2 ln 2 3 2ln 2 3 4ln 2 1 ln 2 A. B. C. D. 2 2 2 2 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 13/96
- 1 1 f x 1 1 1 1 1 Lời giải: Ta có: 2 dx f x d 1 1 f x 1 f x dx . 0 x 1 0 x 1 x 1 0 0 x 1 1 1 3 Suy ra 1 f x dx 2 ln 2 . Hơn nữa ta tính được: 0 x 1 2 1 2 1 1 1 1 1 1 3 1 0 x 1 dx 1 2 0 x 1 x 1 2 dx x 2 ln x 1 2 ln 2 . x 1 0 2 1 1 1 2 3 2 2 1 1 1 Do đó f x dx 2 1 f x dx 1 dx 0 f x 1 dx 0 . 0 0 x 1 0 x 1 0 x 1 1 Suy ra f x 1 , do đó f x x ln x 1 C . Vì f 1 0 nên C ln 2 1 . x 1 1 1 1 Ta được f x dx x ln x 1 ln 2 1 dx ln 2 . 0 0 2 Câu 42: Có bao nhiêu số nguyên m để phương trình m sin m sin 3x sin 3sin x 4sin 3 x có nghiệm thực? A. 9 B. 5 C. 4 D. 8 3 Lời giải: Ta có m sin 3x sin m sin 3 x sin 3sin x 4sin x sin 3 x m sin 3x sin m sin 3x 3sin x sin 3sin x m sin 3x 3sin x m 4sin 3 x . Chọn A. 1 1 1 Câu 43: Phương trình e x ... 2018 0 có tất cả bao nhiêu nghiệm thực? x 1 x 2 x 2018 A. 1 B. 0 C. 2018 D. 2019 1 1 1 Lời giải: Ta có: f x e x 2 2 ... 2 0 do đó lập bảng biến thiên Chọn D. x 1 x 2 x 2018 Câu 44: Trong không gian với hệ trục tọa độ Oxyz , cho bốn đường thẳng có phương trình lần lượt là x 1 y 2 z x2 y2 z x y z 1 x 2 y z 1 d1 : ; d2 : ; d3 : ; d4 : . 1 2 2 2 4 4 2 1 1 2 2 1 Biết rằng đường thẳng có vector chỉ phương u 2; a; b cắt cả bốn đường thẳng đã cho. Giá trị của biểu thức 2a 3b bằng: 3 1 A. 5 B. 1 C. D. 2 2 Lời giải: Ta phát hiện ra 2 đường thẳng đầu đồng phẳng do đó ta viết phương trình mặt phẳng đi qua 2 đường thẳng đó. Tiếp đó xác định giao điểm của 2 đường thẳng d 3 , d 4 với mặt phẳng vừa tìm được và chính là đường thẳng đi qua 2 giao điểm đó. Câu 45: Trong không gian tọa độ Oxyz cho mặt phẳng P : 2mx m 2 1 y m 2 1 z 10 0 và điểm A 2;11; 5 . Biết khi m thay đổi tồn tại hai mặt cầu cố định tiếp xúc với mặt phẳng P và đi qua A . Tìm tổng bán kính hai mặt cầu đó. A. 7 2 B. 15 2 C. 5 2 D. 12 2 Lời giải: Gọi tâm I a, b, c khi đó bán kính mặt cầu: R IA d I , P Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 14/96
- 2 2 2 2ma m 2 1 b m2 1 c 10 R a 2 b 11 c 5 m 2 1 2 m 2 b c 2ma b c 10 đúng với m . 2 2 2 R a 2 b 11 c 5 m 2 1 2 a 0 a 0 2 b5 b 9 Do vậy nên R 4 b 11 R1 R2 12 2 . b c b c 10 c 5 2 b 25 Câu 46: Cho hàm số f x x3 3x m 2 . Có bao nhiêu số nguyên dương m 2018 sao cho với mọi bộ ba số thực a, b, c 1;3 thì f a , f b , f c là độ dài ba cạnh một tam giác nhọn. A. 1989 B. 1969 C. 1997 D. 2008 Lời giải: Ta đặt g x x 3x 2 max g x 20; min g x 0 khi đó f x m g x . 3 1;3 1;3 Ta có: f a f b f c a, b, c 1;3 m g c g a g b a, b, c 1;3 m max g x 2 min g x m 20 . 1;3 1;3 2 2 2 Và f 2 a f 2 b f 2 c a, b, c 1;3 m g a m g b m g c a, b, c 1;3 m 2 2 g a g b g c m g 2 a g 2 b g 2 c 0 a, b, c 1;3 2 m g a g b g c 2 g a g b 2 g a g c 2 g b g c 2 g 2 c 0 a, b, c 1;3 2 m g a g b g c 2 g a g c g b g c a, b, c 1;3 2 m g a g b g c 2 max g x min g x a, b, c 1;3 2 1;3 1;3 m max g x 20 2 2 min g x m 49 . Chọn B. 1;3 1;3 Câu 47: Trong không gian hệ tọa độ Oxyz , cho phương trình các mặt phẳng P : x y 2 z 1 0 và Q : 2 x y z 1 0 . Gọi S là mặt cầu có tâm thuộc Ox đồng thời cắt mặt phẳng P theo giao tuyến là một đường tròn có bán kính bằng 2 và cắt mặt phẳng Q theo giao tuyến là một đường tròn có bán kính bằng r . Xác định r sao cho chỉ tồn tại duy nhất một mặt cầu thỏa mãn điều kiện đã cho. 10 3 2 14 A. r B. r C. r 3 D. r 2 2 2 2 2 Lời giải: Ta gọi I a;0;0 là tâm mặt cầu. Khi đó bán kính: R 2 r 2 d I , Q 22 d I , P 2 2 r 2 2a 1 a 1 do đó để có duy nhất 1 tâm mặt cầu thỏa mãn thì giải 0 . Chọn B. 4 6 6 Câu 48: Trong không gian với hệ trục tọa độ Oxyz gọi là đường thẳng đi qua điểm A 2,1, 0 , song song với mặt phẳng P : x y z 0 và có tổng khoảng cách từ các điểm M 0, 2, 0 , N 4, 0, 0 tới đường thẳng đó đạt giá trị nhỏ nhất? Vector chỉ phương của là? A. u 1, 0,1 B. u 2,1,1 C. u 3, 2,1 D. u 0,1, 1 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 15/96
- Lời giải: Ta gọi Q : x y z 1 0 là mặt phẳng qua điểm A 2,1,0 , song song với mặt phẳng P : x y z 0 . Đồng thời ta phát hiện ra rằng điểm A 2,1,0 là trung điểm MN . Khi đó tổng khoảng cách MF NG MC ND=2d M , Q . Đẳng thức xảy ra khi và chỉ khi là đường thẳng đi qua A và hai hình chiếu C và D của các điểm M 0, 2, 0 , N 4, 0,0 tới mặt phẳng Q . Chọn A. Câu 49: Cho hai số thực a , b lớn hơn 1 thay đổi thỏa mãn a b 10 . Gọi m, n là hai nghiệm của phương trình log a x logb x 2log a x 3log b x 1 0 . Tìm giá trị nhỏ nhất của biểu thức S mn . 16875 4000 A. B. C. 15625 D. 3456 16 27 2 Lời giải: phương trình tương đương với: log b a log a x 2 3log b a log a x 1 0 2 3log b a Theo vi – ét ta có: log a m log a n 2 log a b 3 log a a 3b 2 mn a 3b 2 log b a 2 Khi đó ta có S f a a 3 10 a max f a f 6 3456 . Chọn đáp án D. 1;9 Câu 50: Cho ba số thực a , b, c thay đổi lớn hơn 1 thỏa mãn a b c 100 . Gọi m, n là hai nghiệm của 2 phương trình log a x 1 2log a b 3log a c log a x 1 0 . Tính S a 2b 3c khi mn đạt giá trị lớn nhất. 500 700 650 A. S B. S C. S D. S 200 3 3 3 Lời giải: Theo vi – ét ta có: log a m log a n 1 2log a b 3log a c log a ab 2c 3 mn ab 2c3 3 4 3b 3b Theo AM GM ta có: mn ab 2 100 a b 3a. . (100 a b) 100 a b 100 a b 27 2 2 6 3b 3a 2 3 100 a b 4 2 625.108 . 27 6 27 3b 50 100 150 700 Dấu bằng đặt tại 3a 100 a b a , b ,c S . Chọn đáp án B. 2 3 3 3 3 n n 1 Câu 51: Tìm n biết rằng an x 1 an 1 x 1 ... a1 x 1 a0 x n đồng thời a1 a2 a3 231 . A. n 9 B. n 10 C. n 11 D. n 12 n Lời giải: Ta đặt x 1 y khi đó an y n an1 y n1 ... a1 y a0 y 1 . Như vậy Cn1 Cn2 Cn3 231 n 11 . Chọn C. Câu 52: Biết rằng khi m, n là các số dương khác 1, thay đổi thỏa mãn m n 2017 thì phương trình 8log m x.log n x 7 log m x 6log n x 2017 0 luôn có hai nghiệm phân biệt a , b . Biết giá trị Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 16/96
- 3 c 7 d lớn nhất của ln ab là ln ln với c, d là các số nguyên dương. Tính 4 13 8 13 S 2c 3d . A. S 2017 B. S 66561 C. S 64544 D. S 26221 Lời giải: Ta có: 8log m x.log n m.log m x 7 log m x 6 log n m.log m x 2017 0 2 8log n m log m x 6 log n m 7 log m x 2017 0 6log n m 7 6 7 6 7 Theo vi – ét ta có log m a log m b log m n log m ab log m m 8 .n 8 8log n m 8 8 6 7 3 7 3 7 Vì vậy ab m 8 .n 8 m 4 2017 m 8 ln ab f m ln m ln 2017 m 4 8 3 7 12102 12102 3 12102 7 14119 Mà f ' m 0m ln ab f ln ln 4m 8 2017 m 13 13 4 13 8 13 Do đó c 12102, d 14119 S 66561 . Chọn đáp án B. cos 2017 x Câu 53: Cho hàm số f x x 2 3 x 2 và dãy số un được xác định bởi công thức tổng quát un log f 1 log f 2 ... log f n . Tìm tổng tất cả các giá trị của n thỏa mãn điều kiện un2018 1 ? A. 21 B. 18 C. 3 D. 2018 n n Lời giải: Ta có: un log f k cos 2017 k log k 1 log k 2 ( k chẵn) ( k lẻ). k 1 k 1 Trường hợp 1: n 2 p (Chẵn), khi đó ta có khai triển sau: un log 3 log 4 ... log 2 p 1 log 2 p 2 log 2 log 3 ... log 2 p log 2 p 1 . Như vậy un log p 1 cho nên un2018 1 p 9 n 18 . Trường hợp 1: n 2 p 1 (Lẻ), khi đó ta có khai triển sau: un log 3 log 4 ... log 2 p 1 log 2 p 2 log 2 log 3 ... log 2 p 2 log 2 p 3 . Như vậy un log 4 p 6 cho nên un2018 1 p 1 n 3 . Kết luận: Tổng các giá trị của n thỏa mãn điều kiện un2018 1 là 21. Chọn A. u1 2 Câu 54: Cho dãy số un được xác định bởi công thức 2 . Tìm giới hạn của dãy 2018un 1 un 2017un u u un số S n 1 2 ... ? u2 1 u3 1 un 1 1 1 2017 A. lim S n B. lim S n 2018 D. lim S n 1 C. lim S n 2018 2018 u u u un un1 un Lời giải: Ta có: 2018 un1 un un un 1 n n1 n 2018 un 1 2018 un1 1 un 1 un 1 1 un un1 un un 1 1 2018 . 2018 un1 1 un 1 un 1 1 un 1 1 un 1 un1 1 1 1 1 1 Như vậy: S n 2018 lim S n 2018 lim S n 2018 . u1 1 un1 1 2 1 lim u n 1 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 17/96
- Câu 55: Cho số phức z có z 1 . Tìm giá trị nhỏ nhất của biểu thức: P 1008 1 z 1 z 2 1 z 3 ... 1 z 2017 A. Pmin 1007 B. Pmin 2018 C. Pmin 1008 D. Pmin 2016 1 z 2017 1 z 2016 1 z 2017 1 z 2016 z 2016 1 z 1 z 1 z 2015 1 z 2014 1 z 2015 1 z 2014 z 2014 1 z 1 z Lời giải: Ta có: ... 2 1 z 1 z 1 z 1 z z 1 z 1 z 3 2 3 2 Vậy: P 1008 1 z 1 z 2 1 z 3 ... 1 z 2017 1008 1 z 1 z 1008 1 z 1 z 2016 . Do đó Pmin 2016 và đẳng thức xảy ra có nhiều trường hợp trong đó có z 1 . Câu 56: Cho hàm số y f x nhận giá trị không âm và liên tục trên đoạn 0;1 đồng thời ta đặt x 1 1 g x 1 f t dt . Biết g x f x với mọi x 0;1 . Tích phân g x dx có giá trị lớn 0 0 nhất bằng: 1 2 1 A. B. 1 C. D. 3 2 2 x Fx Lời giải: Đặt F x f t dt g x 1 F x f x x 0;1 2 1 0 x 0;1 0 F x 1 t F x 1 h t 2 1 dx 1 t là hàm số đồng biến trên 0;1 do vậy ta có đánh giá: 0 F x 1 F t 1 1 1 1 1 1 h x h 0 x 0;1 1 x 0 1 x x 0;1 g x dx 2 . F x 1 F x 1 0 Câu 57: Cho hàm số y f x nhận giá trị không âm và liên tục trên đoạn 0;1 đồng thời ta đặt x 1 g x 1 3 f t dt . Biết g x f 2 x với mọi x 0;1 . Tích phân g x dx có giá trị 0 0 lớn nhất bằng: 5 4 7 9 A. B. C. D. 2 3 4 5 x F x Lời giải: Đặt F x f t dt g x 1 3F x f 2 x x 0;1 1 0 x 0;1 0 3F x 1 t Fx 2 2 h t 1 dx 3F t 1 t là hàm số nghịch biến trên 0;1 do vậy ta có: 0 3F x 1 3 3 1 2 2 3 7 h x h 0 x 0;1 3F x 1 t 0 3F x 1 x 1 x 0;1 g x dx . 3 3 2 0 4 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 18/96
- Câu 58: Cho hàm số y f x nhận giá trị không âm và liên tục trên đoạn 0;1 đồng thời ta đặt x2 1 g x 1 f t dt . Biết g x 2 xf x 2 với mọi x 0;1 . Tích phân g x dx có giá trị 0 0 lớn nhất bằng: A. 2 B. 3 C. 4 D. 1 x2 2 xf x 2 Lời giải: Đặt F x 2 f t dt g x 1 F x 2 xf x x 0;1 1 F 2 2 1 0 x 0;1 0 x 2 t 2 xf x 2 h t 1 dx ln 1 F t t là hàm số nghịch biến trên 0;1 do vậy ta có: 0 1 F x 2 1 h x h 0 x 0;1 ln 1 F x x 0 1 F x e x x 0;1 g x dx 2 . 0 n Câu 59: Cho khai triển 1 2 x a0 a1 x a2 x 2 ... an x n . Biết S a1 2 a2 ... n an 34992 , tính giá trị của biểu thức P a0 3a1 9a2 ... 3n an ? A. 390625 B. 78125 C. 1953125 D. 9765625 n Lời giải: Ta có: 1 2 x a0 a1 x a2 x 2 ... an x n do vậy lấy đạo hàm hai vế ta được: n 1 2n 1 2 x a1 2 a2 x ... n an x n1 Thay x 1 vào khai triển trên ta được: 2n.3n 1 a1 2 a2 ... n an 34992 n 8 8 Vậy với n 8 ta có: P a0 3a1 9a2 ... 3n an 1 2.3 390625 . Chọn A. Câu 60: Ba tia Ox, Oy, Oz đôi một vuông góc. Gọi C là điểm cố định trên Oz , đặt OC 1 hai điểm A, B thay đổi trên Ox, Oy sao cho OA OB OC . Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O. ABC ? 6 6 6 A. . B. . C. . D. 6. 4 3 2 1 Lời giải: Ta đặt A a; 0;0 , B 0; b; 0 , C 0; 0;1 trong đó a b 1 2 a 2 b 2 a 2 b 2 . Khi đó 2 1 2 1 1 6 ta có bán kính mặt cầu ngoại tiếp khối tứ diện: R a b2 1 1 . Chọn A. 2 2 2 4 Câu 61: Trong không gian với hệ toạ độ Oxyz , cho mặt cầu S : x 2 y 2 z 2 2 x 2 y 2 z 0 và điểm A 2; 2; 0 . Viết phương trình mặt phẳng OAB , biết rằng điểm B thuộc mặt cầu S , có hoành độ dương và tam giác OAB đều. A. x y 2 z 0 B. x y z 0 C. x y z 0 D. x y 2 z 0 Lời giải: Ta có OA 2 2 do đó điểm B nằm trên các mặt cầu tâm O và tâm A có cùng bán kính 2 2 x2 y 2 z2 2 x 2 y 2 z 0 x2 y 2 z 2 8 2 nên tọa độ B là nghiệm của hệ: x y 2 z 2 8 x y z 0 B 2;0; 2 . 2 2 x y 2 x 2 y 2 z 8 2 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 19/96
- Câu 62: Cho dãy số un xác định bởi u1 5; unn11 unn 2 n 2.3n với mọi n 1 . Tìm số nguyên nhỏ nhất thỏa mãn unn 2n 5100 . A. 146 B. 233 C. 232 D. 147 n n 1 n 1 n 1 u u 2 2.3 n n 1 n 1 n 2 n 2 n 2 u u 2 2.3 Lời giải: Ta có: n 1 n 2 unn 2 1 2 22 ... 2 n 1 2 1 3 32 ... 3n 1 . ... u 2 u1 2 2.3 2 1 Do vậy: unn 2n 3n nên unn 2 n 5100 3n 5100 n 100 log 3 5 n 147 . Chọn D. Câu 63: Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng P : x 2 y 2 z 3 0 và hai điểm A 1; 2;3 , B 3; 4;5 . Gọi M là một điểm di động trên P . Giá trị lớn nhất của biểu thức MA 2 3 bằng: MB A. 3 6 78 B. 3 3 78 C. 54 6 78 D. 3 3 MA 2 3 MA AB Lời giải: Ta dễ dàng nhận thấy A P và AB 2 3 do vậy P . MB MB sin MBA sin AMB MAB MBA AMB MAB Áp dụng định lý hàm số sin: P 2 cot cos 2 cot . sin MAB 2 2 2 Do vậy Pmax MAB nhọn và đạt giá trị nhỏ nhất hoặc tù và đạt giá trị lớn nhất. Điều này xảy ra khi và chỉ khi M nằm trên đường thẳng hình chiếu của AB trên P và tam giác MAB cân tại A. Chọn C. Câu 64: Cho hàm số y f x xác định và liên tục trên thỏa mãn f x5 4 x 3 2 x 1 với mọi 8 x . Tích phân f x dx bằng: 2 32 A. 10 B. C. 72 D. 2 3 Lời giải: Ta đặt x t 5 4t 3 và đổi cận: x 2 thì t 1 và x 8 thì t 1 . Do đó: 8 1 1 f x dx f t 5 4t 3 d t 5 4t 3 2t 1 5t 4 4 dt 10 . 2 1 1 Câu 65: Cho hàm số y f x có đạo hàm cấp hai liên tục trên đoạn 0;1 đồng thời thỏa mãn các điều 1 1 1 ef ' 1 f ' 0 kiện e x f x dx e x f ' x dx e x f '' x dx 0 . Giá trị của biểu thức bằng: 0 0 0 ef 1 f 0 A. 2 B. 1 C. 2 D. 1 1 1 1 Lời giải: Ta đặt e x f x dx e x f ' x dx e x f '' x dx a . Sử dụng tích phân từng phần ta có: 0 0 0 1 1 x x a e df x ef 1 f 0 e f x dx ef 1 f 0 2a 0 0 ef ' 1 f ' 0 1 1 1 a e x df x ef 1 f 0 e x f x dx ef 1 f 0 2a ef 1 f 0 0 0 Tài liệu hay có trong nhóm: https://www.facebook.com/groups/VDC.7.8.9.10TOAN/ Trang 20/96
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn