YOMEDIA
ADSENSE
Ứng dụng RTAB-Map xây dựng bản đồ 3D cho Robot đa hướng bốn bánh dựa trên hệ điều hành ROS
100
lượt xem 10
download
lượt xem 10
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Bài viết này trình bày về quá trình xây dựng bản đồ địa hình 3D cho robot tự hành hoạt động trong môi trường trong nhà dựa trên hệ điều hành lập trình cho robot (Robot Operating System - ROS). Phần cứng là một robot Omni 4 bánh với nền tảng máy tính nhúng hiệu suất cao Jetson-Tx2, camera 3D và một cảm biến Lidar để thu thập dữ liệu từ môi trường bên ngoài.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Ứng dụng RTAB-Map xây dựng bản đồ 3D cho Robot đa hướng bốn bánh dựa trên hệ điều hành ROS
- Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) Ứng dụng RTAB-Map xây dựng bản đồ 3D cho Robot đa hướng bốn bánh dựa trên hệ điều hành ROS Hà Thị Kim Duyên1, Trần Bá Hiến1, Lê Mạnh Long1, Ngô Mạnh Tiến2 1 Trường Đại học Công nghiệp Hà Nội Email: ha.duyen@haui.edu.vn, hienbn3333@gmail.com, lemanhlong@haui.edu.vn 2 Viện Vật lý, Viện Hàn lâm KH&CN Việt Nam Email: nmtien@iop.vast.ac.vn Abstract: Bài báo này trình bày về quá trình xây giả xây dựng và thực thi trên nền ROS. Để tăng độ dựng bản đồ địa hình 3D cho robot tự hành hoạt động chính xác, SLAM thường kết hợp các dữ liệu từ nhiều trong môi trường trong nhà dựa trên hệ điều hành lập cảm biến qua các phương pháp xác suất như Markov, trình cho robot (Robot Operating System - ROS). Phần Kalman, … [6], [7], [8]. Tuy nhiên việc sử dụng nhiều cứng là một robot Omni 4 bánh với nền tảng máy tính cảm biến sẽ làm tăng độ phức tạp, chi phí và thời gian nhúng hiệu suất cao Jetson-Tx2, camera 3D và một cảm xử lý của hệ thống. Đặc biệt là robot tự hành hiện nay biến Lidar để thu thập dữ liệu từ môi trường bên ngoài. không chỉ giới hạn trong việc di chuyển, mà nó còn Kết hợp với việc chạy mô phỏng robot trong môi trường được tích hợp các cơ cấu chấp hành, cánh tay máy trong nhà sử dụng Gazebo và thử nghiệm trên Rviz cho thấy sự tiềm năng, hiệu quả của hướng nghiên cứu sử robot…để thực hiện các nhiệm vụ cụ thể nào đó trong dụng hệ điều hành robot ROS trong việc lập bản đồ môi môi trường không gian hoạt động, do đó SLAM không trường cho robot tự hành. chỉ ý nghĩa trong việc xây dựng bản đồ 2D môi trường hoạt động phục vụ điều hướng cho robot, mà còn cần Keywords: Simultaneous Localization and Mapping, thiết có các bản đồ 3D (SLAM3D) nhằm phục vụ các SLAM2D, SLAM3D, RTAP_Map, Robot Operating System bài toán tương tác khác của robot trong môi trường (ROS). hoạt động đó. Hiện nay với sự phát triển của lĩnh vực thị giác máy tính nên các hệ thống SLAM thường sử dụng I. GIỚI THIỆU camera để thu thập dữ liệu từ môi trường bên ngoài của những tác nhân gần xung quanh và kết hợp với Ngày nay, robot di động được sử dụng rộng rãi Lidar để xác định vị trí của các tác nhân xa. Cùng với trong các hoạt động liên quan đến hoạt động tự trị, tự xu hướng sử dụng hệ điều hành robot – ROS (Robot động di chuyển trong các môi trường không cố định và Operating System) thì phương pháp SLAM cũng được không cần sự giám sát của con người. Hoạt động tự trị phát triển hiệu quả. Các phương pháp SLAM sử dụng của robot trong môi trường chưa được biết đến đòi hỏi cảm biến trên nền tảng ROS phổ biến hiện nay như robot phải tự nhận biết được môi trường xung quanh, Visual SLAM. Một số phương pháp của Visual SLAM xây dựng bản đồ, định vị và lập kế hoạch đường đi và như maplab, ORB-SLAM2, DVO-SLAM, MCPTAM, tránh các vật cản tĩnh và động trong quá trình di RTAB-Map, RGBDSLAMv2… [9], [10], [11]. Trong chuyển [1] [2]. các phương pháp của Visual SLAM thì RTAB-Map Xây dựng bản đồ và định vị đồng thời hay còn gọi tương đối toàn diện khi có thể cung cấp bản đồ dạng là SLAM (Simultaneous Localization and Mapping) là lưới 2D (Occupancy Grid) như cách sử dụng cảm biến quá trình tính toán, xây dựng hoặc cập nhật bản đồ của thông thường hay bản đồ 3D (Octomap). RTAB-Map một môi trường không xác định đồng thời theo dõi vị được phân phối dưới dạng một ROS package có khả trí của các tác nhân bên trong bản đồ đó. Với những năng xử lý thời gian thực, tối ưu hóa việc định vị và cải tiến lớn về tốc độ xử lý của máy tính và sự sẵn có tạo bản đồ thực tế [12]. của các cảm biến như máy ảnh và laser, SLAM hiện Bài báo nghiên cứu, xây dựng một robot có khả được sử dụng cho các ứng dụng thực tế trong một số năng xây dựng bản đồ và định vị đồng thời SLAM 3D lĩnh vực ngày càng tăng. Phương pháp này thu thập dữ sử dụng phương pháp RTAB-Map trên nền tảng ROS. liệu từ các cảm biến để tái tạo môi trường hoạt động Kích thước robot nhỏ phù hợp với việc hoạt động thông qua việc đưa thông tin môi trường vào trong một trong môi trường trong nhà. Robot có khả năng di bản đồ 2D hoặc 3D. Cảm biến được sử dụng trong chuyển, thu thập dữ liệu, xây dựng bản đồ 3D và định SLAM được chia thành hai loại: cảm biến ngoại vi vị vị trí trên bản đồ. Kết quả SLAM ngoài việc sử (thu nhận dữ liệu từ môi trường bên ngoài) và cảm dụng để lập kế hoạch đường đi cho robot trong hệ biến nội vi (xác định sự thay đổi vị trí, hướng, gia thống dẫn đường tự động của robot tự hành, mà còn tốc,…). Đã có nhiều công trình thực hiện SLAM 2D là cần thiết có các bản đồ 3D (SLAM3D) nhằm phục vụ phương pháp tạo ra bản đồ 2D và phát hiện các các bài toán tương tác khác của robot trong môi trường chướng ngại vật xung quanh trong môi trường không hoạt động đó. xác định trong [3],[4] và [5] và cũng đã được các tác ISBN 978-604-80-5958-3 386
- Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) II. MÔ HÌNH ROBOT TỰ HÀNH OMNI BỐN Trong đó vx , v y và w là vận tốc của robot và vận BÁNH VÀ HỆ ĐIỀU HÀNH ROS tốc tín hiệu điều khiển được tạo ra từ tính toán điều A. Mô hình robot tự hành omni bốn bánh khiển. Sau khi tín hiệu được chuyển đổi, vị trí của Mô hình động học cho robot Omni bốn bánh được robot được điều khiển trực tiếp bởi các tín hiệu này xây dựng dựa trên mô hình với bánh xe Omni được bố thông qua bốn bánh của robot. trí đặt cách nhau một góc 900 như trên hình 2. B. Cấu trúc phần cứng thực tế của omni robot bốn T bánh q = x y là véc tơ tọa độ của robot trong hệ tọa Mô hình robot được xây dựng với 3 thành phần độ toàn cục Oxy , trong đó x và y lần lượt là toạ độ chính: Phần xử lý trung tâm, phần cảm biến, và phần của robot theo phương Ox và Oy , là góc quay của điều khiển cơ cấu chấp hành. Về cấu trúc bộ phận di robot so với chiều dương của trục Ox . chuyển là Omni 4 bánh đa hướng giúp việc di chuyển T linh hoạt và dễ dàng hơn. Máy tính nhúng đóng Jetson v vx vy là véc tơ vận tốc của robot trong hệ TX2 có vai trò là bộ xử lý trung tâm được cài đặt hệ trục tọa độ động gắn vào tâm robot bao gồm vận tốc điều hành ROS cùng với các node tính toán thuật toán tịnh tiến và vận tốc góc của robot. SLAM. Sau khi tính toán xong, Jetson TX2 gửi lệnh điều khiển cho bộ phận điều khiển cơ cấu chấp hành là mạch STM32. RPLidar quét laser 360o giúp Robot xây dựng bản đồ và nhận diện vật cản tầm cao với khoảng cách xa. Camera 3D sử dụng Deep Camera giúp nhận diện vật cản tầm trung và tầm thấp ở phía trước Robot. Hình 1. Robot Omni đa hướng 4 bánh Hình 3. Mô hình thực tế và cấu trúc phần cứng của Omni robot III. BẢN ĐỒ HÓA MÔI TRƯỜNG VÀ ĐỊNH VỊ Hình 2. Hệ trục tọa độ của robot tự hành bốn bánh đa hướng. ĐỒNG THỜI SLAM CHO ROBOT Để đơn giản trong việc thiết kế bộ điều khiển cho Trong lĩnh vực robotic, vấn đề định vị đồng thời robot, mối quan hệ giữa vận tốc trong trục của robot xây dựng bản đồ SLAM là một trong những vấn đề và vận tốc trong trục của môi trường được mô tả bằng quan trọng nhất và đóng vai trò then chốt trong điều mô hình động học của robot: hướng robot, vì vậy đã thu hút được sự quan tâm lớn cos sin 0 của đông đảo các nhà khoa học. Vấn đề SLAM được mô tả tổng quát trong quá trình khi robot di chuyển để q sin cos 0 v. (1) lập bản đồ những nơi con người không thể hoặc không 0 0 1 muốn tiếp cận, đồng thời robot tự xác định được vị trí Từ (1) chúng ta sẽ có được phương trình để lập của nó so với những đối tượng xung quanh. Kỹ thuật trình cho Robot trong ROS: xử lý SLAM sẽ cung cấp thông tin bản đồ về môi trường cũng như đồng thời ước tính tư thế riêng (vị trí x vx cos v y sin và hướng) của robot dựa vào các tín hiệu thu được từ y vx sin v y cos (2) các cảm biến tầm nhìn bao gồm Rplidar và 3D camera. w ISBN 978-604-80-5958-3 387
- Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) A. Định nghĩa SLAM trạng thái của robot tại thời điểm k khi biết giá trị quan sát được và tín hiệu đầu vào điều khiển cùng với trạng thái ban đầu của robot. Việc tính toán giá trị phân phối xác xuất này yêu cầu mô hình chuyển trạng thái và mô hình quan sát để mô tả việc tác động của tín hiệu điều khiển và các giá trị quan sát được. Mô hình quan sát mô tả xác suất thực hiện được giá trị quan sát zk khi vị trí robot và vị trí điểm mốc trên bản đồ đã được xác định, và nó có dạng P( zk | xk , m) (4) Và giải thiết rằng khi vị trí của robot và bản đồ được xác định thì các giá trị quan sát được là độc lập có điều kiện. Mô hình chuyển động của robot được mô Hình 4. Mô tả quá trình SLAM tả bởi phân bố xác suất chuyển trạng thái sau: Xét hệ robot tự hành di chuyển vào một môi P( xk | xk 1 , uk ) (5) trường không xác định và các giá trị khoảng cách từ Phân bố này được giả sử là thoả mãn tiêu chuẩn robot đến các vật cản tĩnh trong môi trường được đo Markov, ở đó trạng thái xk chỉ phụ thuộc vào trạng bằng cảm biến Lidar như hình 4. Tại thời điểm k các thái ngay trước nó xk 1 và tín hiệu điều khiển uk , và giá trị sau đây được định nghĩa: xk : vector trạng thái miêu tả hướng và vị trí của xk độc lập với các giá trị quan sát được và bản đồ m . robot. Thuật toán SLAM được thực thi với hai bước tuần uk : vector điều khiển lái robot từ thời điểm k 1 tự lặp lại là bước dự đoán (prediction) còn được gọi là cập nhật thseo thời gian và bước chỉnh sửa (correction) đến trạng thái xk tại thời điểm k còn được gọi là cập nhật theo đo lường. mi : vector miêu tả vị trí của điểm mốc thứ i được Bước dự đoán được mô tả bởi phân phối: giả định là không thay đổi. P( xk , m | Z 0:k 1 , U 0:k ) (6) zi , k : phép quan sát được lấy từ robot từ vị trí thứ i Do trạng thái của robot xk và bản đồ m là độc tại thời điểm thứ k . Khi có nhiều quan sát mốc tại một lập, ta có: thời điểm hoặc khi mốc cụ thể không liên quan đến P ( xk , m | Z 0:k 1 , U 0:k , x0 ) P ( xk | Z 0:k 1 ,U 0:k ) P( m | Z 0:k 1 , U 0:k ) (7) khoảng đang xét, phép quan sát sẽ được viết đơn giản P( xk | Z 0:k 1 , U 0:k , xk 1 ) P( xk 1 | Z 0:k 1 , U 0:k ) P (m | Z 0:k 1 , U 0:k )dxk 1 là zk . xk 1 và m độc lập nên (7) trở thành Thêm vào đó, ta sẽ định nghĩa thêm: P( x k | Z 0:k 1 , U 0:k , xk 1 ) P ( xk 1 , m | Z 0:k 1 , U 0:k ) dxk 1 (8) X 0:k x0 , x1 ,..., xk X 0:k 1 , xk : Tập chứa các xk có tính chất Markov nên (8) được thu gọn thành vị trí của robot từ thời điểm ban đầu đến thời điểm k . U 0:k u0 , u1 ,..., uk U 0:k 1 , uk : Tập chứa các P( x k | xk 1 , uk ) P( xk 1 , m | Z 0:k 1 , U 0:k 1 ) dxk 1 (9) giá trị đầu vào điều khiển từ thời điểm ban đầu đến Sau khi tính toán bước dự đoán, bước chỉnh sửa thời điểm k . được thực hiện theo phân phối sau m m1 , m2 ,..., mn : Tập các điểm mốc thể hiện vị P( xk , m | Z 0:k , U 0:k ) P ( zk | xk , m) P( xk , m | Z 0:k 1 , U 0:k ) (10) trí vật cản quét được Z 0:k z0 , z1 ,..., zk Z 0:k 1 , zk : Tập các điểm P( zk | Z 0:k 1 , U 0:k ) mốc quan sát được từ thời điểm ban đầu đến thời điểm Biểu thức (8) và (9) mô tả quá trình tính toán đệ quy cho việc tính toán xác suất hậu nghiệm (10) cho k. trạng thái robot xk và bản đồ m tại thời điểm k dựa Vấn đề SLAM từ đó được định nghĩa là việc xác định được vị trí của các vật cản tĩnh trong môi trường vào tập quan sát Z 0:k và tập tín hiệu điều khiển đầu m để bản đồ hoá môi trường và đồng thời ước tính vị vào U 0:k . trí của robot trong bản đồ đó xk . IV. ỨNG DỤNG RTAB-MAP XÂY DỰNG BẢN B. Kỹ thuật SLAM trong xác suất robotic ĐỒ 3D Ở dạng xác suất, vấn đề SLAM được biểu diễn dưới dạng phân phối xác suất sau RTAB-Map là một phương pháp SLAM dựa trên đồ P( xk , m | Z 0:k , U 0:k ) (3) thị RGB-D sử dụng bộ đóng vòng lặp. Bộ đóng vòng Phân phối xác suất này mô tả phân phối hậu lặp sử dụng phương pháp tiếp cận từ nhiều điểm để xác nghiệm liên kết giữa vị trí điểm mốc trong bản đồ với định khả năng một hình ảnh mới đến từ một vị trí trước ISBN 978-604-80-5958-3 388
- Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) đó hay vị trí mới. RTAB-Map phát hiện lỗi sai bằng chia thành bộ nhớ làm việc (WM) và bộ nhớ dài hạn cách sử dụng phương pháp GoodFeaturesToTrack (LTM), khi một nút chuyển sang LTM, nó không còn (GFTT) theo mặc định, giúp giảm bớt việc điều chỉnh khả dụng cho các modul bên trong WM. Khi thời gian tham số, cho phép các tính năng được phát hiện đồng cập nhật RtabMap vượt quá ngưỡng thời gian cho phép, nhất trên các kích thước hình ảnh và cường độ ánh sáng một số nút trong WM sẽ chuyển sang LTM để giới hạn khác nhau. Ngoài ra, RTAB-Map hỗ trợ tất cả các loại kích thước của WM và giảm thời gian cập nhật. STM tính năng có sẵn trong OpenCV, chẳng hạn như SIFT, dùng để xác định xem nút nào cần chuyển sang LTM SURF, ORB, FAST hoặc BRIEF. Một trình tối ưu hóa [11], [13], [14]. đồ thị giảm thiểu các lỗi trong bản đồ khi các ràng buộc mới được thêm vào và một phương pháp quản lý bộ nhớ hiệu quả được sử dụng để thực hiện các ràng buộc thời gian thực trong các môi trường lớn. Để thực hiện SLAM 3D, chúng tôi sử dụng gói Rtab-Map cho omni robot. Bằng việc thu thập dữ liệu từ RPLidar, Astra camera và chuyển đổi với cấu trúc như hình 5. Hình 6. Sơ đồ tín hiệu xây dựng và định vị đồng thời Gói RTAB-Map ước tính vị trí của Robot và xây dựng bản đồ dựa trên dữ liệu thu được và các phép đo hình học của nó. - Lidar: node này thực hiện chạy cảm biến RPLidar và gửi thông tin “scan” cần thiết đến node rtabmap. - Camera 3D: node này thực hiện chạy camera 3D và gửi thông tin “image(rgb)”, “image(depth)”, “CameraInfo” đến node rgbd_sync. Hình 5. Sơ đồ khối rtabmap-ros - rgbd_sync: node này đảm bảo rằng các chủ đề Cấu trúc của rtabmap_ros là một biểu đồ với các nút hình ảnh được đồng bộ hóa chính xác với nhau trước liên kết với nhau. Sau khi đồng bộ hóa các dữ liệu đầu khi đi vào node rtabmap. vào, modul bộ nhớ ngắn hạn (STM) tạo một nút để ghi - rtabmap: node này sẽ đồng bộ hóa các chủ đề đến nhớ tư thế Odometry, dữ liệu cảm biến và các thông tin từ tín hiệu LaserScan và thông tin từ Camera 3D. bổ xung cho các modul tiếp theo. - nav_msgs/Odometry: xuất bản thông tin về vị trí, Các đầu vào yêu cầu là: TF để xác định vị trí của vận tốc của robot trong không gian tự do đến node các cảm biến liên quan đến chân đế robot, Odometry, rtabmap. hình ảnh từ camera và đầu quét laser từ Lidar. Tất cả - rviz, rtabmaprviz: thực hiệm giám sát quá trình các thông báo từ đầu vào này sau đó được đồng bộ hóa hoạt động của robot và theo dõi quá trình tạo map. và chuyển đến thuật toán đồ thị (SLAM). Kết quả đầu Robot sử dụng thông tin “image(rgb)”, ra là dữ liệu bản đồ chứa trong Map Data được bổ xung “image(depth)”, “CameraInfo” từ camera 3D qua quá mới nhất với các dữ liệu cảm biến nén và biểu đồ, Map trình đồng bộ hóa bởi node rgdb_image để thực hiện Graph không có bất kỳ dữ liệu nào, hiệu chỉnh quá trình tạo map 3D. Camera còn được sử dụng để Odometry được xuất bản trên TF, một tùy chọn lưới phát hiện đóng vòng lặp dựa trên hình ảnh RGBD, chiếm dụng 3D (OctoMap), Point Cloud và một lưới nhưng nó không cải thiện hệ thống quá nhiều. Thông chiếm dụng 2D (2D Occupancy Grid). tin “scan” từ cảm biến RPLidar được sử dụng để cải Phương pháp RtabMap chạy trên module quản lý đồ thiện kết quả của quá trình SLAM, giúp tinh chỉnh quá thị. Nó sử dụng để giới hạn kích thước của biểu đồ để trình đo mùi (Odometry) làm cho kết quả được tốt hơn có thể đạt được SLAM trực tuyến lâu dài trong môi trên bản đồ. trường lớn. Nếu không có bộ quản lý bộ nhớ, khi bản đồ phát triển, thời gian xử lý của các module như đóng V. KẾT QUẢ MÔ PHỎNG vòng lặp, phát hiện vùng lân cận, tối ưu hóa đồ thị và Phần mềm mô phỏng Gazebo được tích hợp để có lắp ráp bản đồ toàn cầu cuối cùng có thể vượt qua thời thể sử dụng trong ROS. Môi trường trong Gazebo gian ràng buộc với thời gian thực, tức là thời gian xử lý được tối ưu sao cho các điều kiện vật lý giống với môi trở nên quá lớn. Về cơ bản, bộ nhớ của RtabMap được trường thực tế nhất, nhóm tác giả đã xây dựng môi ISBN 978-604-80-5958-3 389
- Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) trường trong nhà tại hai môi trường trong nhà khác nhau nhằm đa dạng các môi trường hoạt động trong nhà với những vật cản khác nhau. Mô hình robot tự hành Omni như hình 7, với các tham số mô phỏng và thực nghiệm giống nhau: Tốc độ lớn nhất theo phương x và y: 1.5 m/s Tốc độ góc lớn nhất: 0.5 rad/s Bán kính robot: 0.25 m Bán kính bánh xe: 0.07 m Hình 9. Quá trình SLAM 3D của môi trường 2 Hình 7. Mô hình 3D robot Omni và môi trường thực nghiệm tại hai môi trường trong nhà Tham số cho cảm biến lidar: Phạm vi quét lớn nhất: 0.2 ÷10 m, độ phân giải: 1o , góc quét: 360o Camera astra có thông số như sau: Độ phân giải hình ảnh RGB: 640x480 @30fps Độ phân giải hình ảnh chiều sâu: 640x480 @30fps Kích thước: 165mm x 30mm x 40mm Phạm vi: 0.6m - 8m Việc chạy mô phỏng thử nghiệm SLAM được thực hiện trên Rviz, là công cụ trực quan của ROS. Mục đích chính là hiển thị các thông báo thu được ở chế độ Hình 10. Kết quả SLAM 3D của môi trường 1 3D, cho phép người dùng xác minh trực quan dữ liệu. Thông qua phần mềm Rviz, người dùng có thể giám sát được môi trường xung quanh của Robot theo thời gian. Hình 8 là là kết quả thu được khi bắt khởi chạy kỹ thuật SLAM trong hệ thống nhận biết robot. Các đám mây điểm ảnh được quét từ camera được dựng lên với độ cao và màu sắc tương đồng với các vật thể được tạo ra trong môi trường trong nhà. Hình 11. Kết quả SLAM 3D của môi trường 2 Môi trường thực nghiệm gồm các vách tường ngăn và các vật cản được sắp xếp ở các vị trí ngẫu nhiêu trên bản đồ. Robot di chuyển xung quanh phòng, sử dụng camera để thu lại hình ảnh trong quá trình di chuyển, từ đó tái tạo lại bản đồ của môi trường xung Hình 8. Quá trình SLAM 3D với môi trường 1 quanh. Bản đồ 3D ở hình 8, 9 là các pointcloud hay còn gọi là đám mây điểm được thu thập trong quá ISBN 978-604-80-5958-3 390
- Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) trình robot chuyển động. Dữ liệu đám mây này biểu "Mapping and Navigation for Indoor Robots under ROS: thị hình ảnh của một vật dưới dạng nhiều điểm trong An Experimental Analysis," Creative Commons CC BY không gian tọa độ 3 chiều. Hình 10, 11 biểu diễn chi license, 2019. tiết kết quả xây dựng toàn bộ bản đồ. Do kích thước [5] Q. Lin et al., "Indoor mapping using gmapping on embedded system," in 2017 IEEE International của robot nhỏ, nên thị trường hoạt động của camera Conference on Robotics and Biomimetics (ROBIO), còn thấp nhưng vẫn thu được ảnh ở khoảng cách xa. 2017, pp. 2444-2449: IEEE. Kết quả cho thấy robot có khả năng tái tạo lại bản đồ [6] D.Schleicher, L.Bergasa, M.Ocan, R.Barea and E.Lopez, một cách hiệu quả. “Real-time hierarchical stereo Visual SLAM in large- Dựa vào kết quả mô phỏng ta thấy có thể sử dụng scale environment”, 2010. camera 3D cho quá trình SLAM và điều hướng. Trong [7] S. Das, “Simultaneous Localization and Mapping khi Lidar có thể phát hiện các vật cản ở xa, gần với (SLAM) using RTAB-Map”, 2018. cùng độ cao đặt Lidar trên robot thì camera 3D có thể [8] Dieter Fox, Wolfram Burgard, and Sebastian Thrun, “Markov Localization for Mobile Robots in Dynamic phát hiện các vật ở khoảng cách gần mà tia Lidar Environments”, 1999. không thể phát hiện được. Ngoài ra việc sử dụng [9] E.A.Wan and R.v.d Merwe, “The Unscented Kalman camera 3D còn giúp giải quyết những hạn chế khi điều Filter for Nonlinear Approaches”, 2006. hướng tự động trong môi trường có các kết cấu khó [10] Giorgio Grisetti, Rainer Kummerle, Cyrill khăn như hành lang, bậc thang… Stachniss, Wolfram Burgard, "A Tutorial on Graph-Base SLAM," IEEE Intelligent Transportation Systems VI. KẾT LUẬN Magazine, 2010. [11] Nicolas Ragot, Redouane Khemmar, Adithya Bài báo này trình bày về lập bản đồ hóa (SLAM Pokala, Romain Rossi, Benchmark of Visual SLAM 3D) cho robot tự hành hoạt động trong các môi trường Algorithm: ORB-SLAM2 vs RTAB-Map, 2019. trong nhà dựa trên hệ điều hành lập trình cho robot [12] Mathieu Labbé, Francois Michaud, RTAB-Map as ROS. Các kết quả cho thấy robot có khả năng thu thập an Open-Source Lidar and Visual SLAM Library for dữ liệu từ môi trường xung quanh, xây dựng bản đồ Large-Scale and Long-Term Online Operation, Canada. 3D và định vị vị trí của robot trên bản đồ của môi [13] Thrilochan Sharma Pendyala, Prithvi Sekhar trường trong nhà. Các kết quả này là nền tảng cho các Pagala, Hamsa Datta Perur, "Comparative analysis of bước điều hướng, lập quỹ đạo chuyển động cho robot ROS based 2D and 3D SLAM algorithms for phục vụ các bài toán cụ thể như robot tự hành hoạt Autonomous Ground Vehicles," June 2020. động trong các nhà máy, ứng dụng trong công việc [14] Mathieu Labb´e, Fran¸cois Michaud, "Long-Term Online Multi-Session Graph-Based SPLAM with vận chuyển hàng hóa trong nhà, Logictis.. . Đặc biệt Memory Management". bên cạnh đó, bản đồ 3D có ý nghĩa với các robot tự hành có tích hợp các cơ cấu chấp hành, cánh tay máy robot…vv ngoài việc di chuyển tự trị còn có thể thực hiện các nhiệm vụ tương tác cụ thể trong môi trường không gian hoạt động. LỜI CẢM ƠN Bài báo này được hoàn thành với sự tài trợ của Đề tài cấp Quốc gia thuộc chương trình phát triển Vật lý 2021-2025: "Nghiên cứu phát triển robot tự hành thông minh sử dụng các công nghệ sensor khác nhau và nền tảng IoT, AI, định hướng ứng dụng trong quan trắc môi trường phóng xạ", 2022-2024. TÀI LIỆU THAM KHẢO [1] P. RcKerrow, “Introduction to Robotics”, Addison- Wesley, 1991. [2] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, “Introduction to Autonomous Mobile Robots”, The MIT Press, February 2011. [3] S. Park and G. Lee, "Mapping and localization of cooperative robots by ROS and SLAM in unknown working area," in 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2017. [4] B. M. da Silva, R. S. Xavier, and L. M. Gonçalves, ISBN 978-604-80-5958-3 391
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn