’<br />
Tap ch´ Tin hoc v` Diˆu khiˆn hoc, T.23, S.2 (2007), 179–186<br />
ı<br />
e<br />
e<br />
.<br />
. a `<br />
.<br />
<br />
.<br />
´<br />
’.<br />
´<br />
’<br />
ˆ<br />
ˆ<br />
ˆ<br />
ˆ<br />
`<br />
ˆ<br />
XAY DU NG CAY QUYET DINH SU DUNG PHU THUOC HAM XAP XI<br />
.<br />
.<br />
.<br />
.<br />
.<br />
ˆ<br />
ˆ<br />
˜ ´.<br />
A<br />
VU DU C THI, TR` N QUANG DIEU<br />
.<br />
<br />
Viˆn Cˆng nghˆ thˆng tin, Viˆn Khoa hoc v` Cˆng nghˆ Viˆt Nam<br />
e<br />
o<br />
e o<br />
e<br />
e e<br />
.<br />
.<br />
.<br />
. a o<br />
.<br />
.<br />
Abstract. In this paper, we introduce in brief on the concepts of Approximate Functional Dependency (AFD), of Approximate Functionally Cross-Characteristic Dependency known as type II AFD<br />
and describe an adoption of AFD to a constructing method of decisson tree for databases mining<br />
purposes.<br />
´<br />
´<br />
e a e<br />
o a<br />
a ’<br />
e<br />
T´m t˘t. Trong b`i b´o n`y, ch´ ng tˆi gi´.i thiˆu so. lu.o.c vˆ kh´i niˆm phu thuˆc h`m xˆ p xı, phu<br />
o<br />
a<br />
a a a<br />
u<br />
o o<br />
. `<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´<br />
´<br />
a<br />
o u a<br />
o ınh ’<br />
o<br />
e<br />
o<br />
e<br />
thuˆc h`m xˆ p xı liˆn quan dˆn tu.o.ng quan h`m sˆ gi˜.a c´c thuˆc t´ cua mˆt quan hˆ (Phu thuˆc<br />
o a<br />
a ’ e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´<br />
´<br />
h`m xˆ p xı loai hai) v` u.ng dung phu thuˆc h`m xˆ p xı nh˘ m xˆy du.ng cˆy quyˆt dinh trong khai<br />
a<br />
a ’ .<br />
a´<br />
a<br />
e .<br />
o a<br />
a ’ `<br />
a<br />
a<br />
.<br />
.<br />
.<br />
.<br />
ph´ d˜. liˆu.<br />
a u e<br />
.<br />
<br />
ˆ<br />
´.<br />
1. GIO I THIEU<br />
.<br />
´<br />
a<br />
a<br />
Phu thuˆc h`m xˆ p xı (Approximate Functional Dependency AFD) v` phu.o.ng ph´p ph´t<br />
o a<br />
a ’<br />
a<br />
.<br />
.<br />
.o.c nhiˆu t´c gia dˆ cˆp v` u.ng dung trong nhiˆu b`i<br />
` a<br />
`<br />
´<br />
’ ` a a´<br />
e<br />
e a<br />
e .<br />
hiˆn c´c phu thuˆc h`m xˆ p xı d˜ du .<br />
e a<br />
o a<br />
a ’ a<br />
.<br />
.<br />
.<br />
.<br />
. liˆu ([1,3]). Phu thuˆc h`m xˆ p xı l` mˆt phu thuˆc h`m c´ t´ chˆ t gˆn<br />
´ ’ a o<br />
´ a<br />
to´n khai ph´ d˜ e<br />
a<br />
a u .<br />
o a<br />
a<br />
o a<br />
o ınh a `<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.i mˆt quan hˆ r v` du.o.c dinh ngh˜ nhu. sau.<br />
´<br />
d´ng dˆi v´ o<br />
u<br />
o o<br />
ıa<br />
e<br />
a<br />
.<br />
.<br />
. .<br />
´<br />
Dinh ngh˜ 1. Phu thuˆc h`m xˆ p xı (Approximate Functional Dependency - AFD)<br />
ıa<br />
o a<br />
a ’<br />
.<br />
.<br />
.<br />
´ ’ e<br />
´<br />
Cho ε, 0<br />
ε<br />
1, X → Y l` phu thuˆc h`m xˆ p xı nˆu: approx(X → Y )<br />
a<br />
o a<br />
a<br />
ε, v´.i<br />
o<br />
.<br />
.<br />
’ a r v` X → Y d´ng trˆn s}/|r|).<br />
u<br />
e<br />
approx(X → Y ) = 1 (max {|s|, s l` tˆp con cu<br />
a a<br />
a<br />
.<br />
’ . dˆy, |s|, |r| l` sˆ phˆn tu. cua s v` r.<br />
´ `<br />
’ ’<br />
a<br />
a o a<br />
O a<br />
´<br />
’ y . e<br />
’<br />
Trong c´c b`i to´n quan l´ thu.c tˆ, thu.`.ng xay ra c´c nh´m thuˆc t´ c´ su. liˆn quan<br />
a a<br />
a<br />
o<br />
a<br />
o<br />
o ınh o . e<br />
.<br />
.´.i dang h`m sˆ v´.i nhau (tuyˆn t´ ho˘c phi tuyˆn). Dˆi v´.i c´c tru.`.ng ho.p n`y, ta<br />
´<br />
´<br />
´<br />
´<br />
a<br />
o o<br />
e ınh a<br />
e<br />
o<br />
a<br />
du o .<br />
o o a<br />
.<br />
.<br />
´n phu thuˆc h`m xˆ p xı loai hai - phu thuˆc h`m xˆ p xı liˆn quan dˆn tu.o.ng quan<br />
´ ’ .<br />
´ ’ e<br />
´<br />
x´t dˆ<br />
e e<br />
o a<br />
a<br />
o a<br />
a<br />
e<br />
.<br />
.<br />
.<br />
.<br />
´<br />
o ınh ’<br />
o<br />
e<br />
h`m sˆ gi˜.a c´c thuˆc t´ cua mˆt quan hˆ.<br />
a<br />
o u a<br />
.<br />
.<br />
.<br />
´<br />
` a<br />
´<br />
’ ` a e<br />
a<br />
e .<br />
e<br />
a u e a<br />
e .<br />
Viˆc xˆy du.ng cˆy quyˆt dinh trong khai ph´ d˜. liˆu d˜ du.o.c nhiˆu t´c gia dˆ cˆp dˆn<br />
e a<br />
.<br />
.<br />
.<br />
.<br />
.o.ng ph´p khai ph´ d˜. liˆu nh˘ m kˆt xuˆ t c´c thˆng tin h˜.u ´ tiˆm ˆ n trong<br />
’<br />
`<br />
´<br />
´ a<br />
` a<br />
trong c´c phu<br />
a<br />
a<br />
a u e<br />
a<br />
e<br />
a<br />
o<br />
u ıch e<br />
.<br />
’<br />
´<br />
’ u e o<br />
a<br />
e .<br />
ıa<br />
a o<br />
e<br />
o ınh . a<br />
c´c co. so. d˜. liˆu l´.n. Cˆy quyˆt dinh l` mˆt kiˆ u mˆ h` du. b´o (predictive model), ngh˜<br />
a<br />
.<br />
.<br />
. c´c quan s´t vˆ mˆt su. vˆt/hiˆn tu.o.ng t´.i c´c kˆt luˆn vˆ gi´ tri muc tiˆu<br />
` o . a<br />
´ a ` a . .<br />
a e .<br />
e<br />
e<br />
e<br />
o a e<br />
l` mˆt ´nh xa t` a<br />
a o a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. u<br />
´<br />
´<br />
’<br />
’<br />
a<br />
e<br />
a<br />
e .<br />
o a<br />
u ınh a a a o .<br />
cua su. vˆt/hiˆn tu.o.ng. Cˆy quyˆt dinh c´ cˆ u tr´c h` cˆy v` l` mˆt su. tu.o.ng tru.ng cua<br />
. .<br />
.<br />
.<br />
.<br />
.<br />
.o.ng th´.c quyˆt dinh cho viˆc x´c dinh l´.p c´c su. kiˆn d˜ cho. Mˆi n´t cua cˆy chı<br />
˜ u ’ a<br />
´ .<br />
’<br />
u<br />
e<br />
e a .<br />
o a . e a<br />
o<br />
mˆt phu<br />
o<br />
.<br />
.<br />
.<br />
’<br />
’ . e<br />
’ a<br />
a<br />
o<br />
e<br />
e<br />
o<br />
a u e . u<br />
ra mˆt tˆn l´.p ho˘c mˆt ph´p thu. cu thˆ , ph´p thu. n`y chia khˆng gian c´c d˜. liˆu tai n´t<br />
o e o<br />
.<br />
.<br />
.<br />
.<br />
’<br />
˜ .<br />
´<br />
’ o e .<br />
’<br />
’<br />
d´ th`nh c´c kˆt qua c´ thˆ dat du.o.c cua ph´p thu.. Mˆi tˆp con du.o.c chia ra l` khˆng<br />
o a<br />
a e<br />
o a<br />
e<br />
a o<br />
.<br />
.<br />
´ e<br />
’ .<br />
’ a u e<br />
´<br />
o a `<br />
a o<br />
a<br />
a<br />
gian con cua c´c d˜. liˆu du.o.c tu.o.ng u.ng v´.i vˆ n dˆ con cua su. phˆn l´.p. Su. phˆn chia n`y<br />
.<br />
.<br />
.<br />
<br />
˜ ´.<br />
ˆ<br />
ˆ<br />
VU DU C THI, TR` N QUANG DIEU<br />
A<br />
.<br />
<br />
180<br />
<br />
’<br />
´<br />
thˆng qua mˆt cˆy con tu.o.ng u.ng. Qu´ tr` xˆy du.ng cˆy quyˆt dinh c´ thˆ xem nhu. l`<br />
o<br />
o a<br />
´<br />
a ınh a<br />
a<br />
a<br />
e .<br />
o e<br />
.<br />
.<br />
. phˆn l´.p dˆi tu.o.ng ([4–6]). Mˆt cˆy quyˆt dinh c´ thˆ<br />
’<br />
’<br />
´<br />
´<br />
´<br />
a o<br />
o a<br />
e .<br />
e .<br />
o<br />
o e<br />
mˆt chiˆn thuˆt chia dˆ tri cho su<br />
o<br />
e<br />
a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
` ng c´c kh´i niˆm n´t v` du.`.ng nˆi c´c n´t trong cˆy. Viˆc nghiˆn c´.u xˆy du.ng<br />
´ a u<br />
o<br />
o<br />
a<br />
e<br />
e u a<br />
mˆ ta b˘<br />
o ’ a<br />
a<br />
a<br />
e<br />
u a<br />
.<br />
.<br />
.<br />
´<br />
´<br />
’ o<br />
a<br />
e<br />
o a<br />
e<br />
e a<br />
u e<br />
cˆy quyˆt dinh mang lai hiˆu qua tˆt cho viˆc l`m trong sach d˜. liˆu, ph´t hiˆn sai s´t v`<br />
a<br />
e .<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
’<br />
´<br />
´<br />
’<br />
’<br />
du.a ra quyˆt dinh ph` ho.p trong t`.ng ho`n canh v` chiˆn lu.o.c cu thˆ cua b`i to´n quan<br />
u .<br />
e .<br />
u<br />
a<br />
a<br />
e<br />
a<br />
a<br />
.<br />
. e ’<br />
l´.<br />
y<br />
´<br />
`<br />
´ ´<br />
’<br />
a<br />
e u a<br />
e<br />
a ıch,<br />
e e<br />
Phu thuˆc h`m (FDs) d˜ du.o.c nghiˆn c´.u rˆ t nhiˆu trong khi phˆn t´ thiˆt kˆ co. so.<br />
o a<br />
.<br />
.<br />
.<br />
. liˆu. Phu thuˆc h`m gi˜.a c´c thuˆc t´ quan hˆ cho ph´p x´c dinh ch´ x´c c´c mˆi<br />
´<br />
o a<br />
u a<br />
o ınh<br />
e<br />
e a .<br />
d˜ e<br />
u .<br />
ınh a a<br />
o<br />
.<br />
.<br />
.<br />
.<br />
`<br />
’ u e<br />
a a<br />
o<br />
o a<br />
o<br />
quan hˆ trong co. so. d˜. liˆu ([2]). C´c r`ng buˆc do phu thuˆc h`m quy dinh trong so. dˆ<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´ . .<br />
’ .<br />
e a<br />
a<br />
e .<br />
o<br />
o o a o u e<br />
quan hˆ tu.o.ng dˆi dˆc lˆp v´.i d˜. liˆu. Viˆc xˆy du.ng cˆy quyˆt dinh su. dung phu thuˆc<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´<br />
’ o<br />
h`m s˜ mang lai hiˆu qua tˆt do c´c t´ chˆ t r`ng buˆc ch˘t cua phu thuˆc h`m.<br />
a<br />
e<br />
e<br />
a ınh a a<br />
o<br />
a ’<br />
o a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
Trong b`i b´o n`y, ch´ng tˆi tr` b`y vˆ kh´i niˆm phu thuˆc h`m xˆ p xı, phu thuˆc<br />
a a a<br />
u<br />
o ınh a `<br />
e a e<br />
o a<br />
a ’<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´<br />
´<br />
´<br />
h`m xˆ p xı loai hai, mˆt sˆ t´ chˆ t cua phu thuˆc h`m xˆ p xı v` u.ng dung v`o viˆc xˆy<br />
a<br />
a ’ .<br />
o o ınh a ’<br />
o a<br />
a ’ a´<br />
a<br />
e a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
a<br />
e .<br />
a u e<br />
du.ng cˆy quyˆt dinh trong khai ph´ d˜. liˆu.<br />
.<br />
.<br />
<br />
´<br />
’<br />
ˆ<br />
`<br />
ˆ<br />
2. PHU THUOC HAM XAP XI LOAI HAI<br />
.<br />
.<br />
.<br />
Cho r l` mˆt quan hˆ trˆn tˆp thuˆc t´ R = {A1, A2, ...An} trong d´ c´c thuˆc t´<br />
a o<br />
e e a<br />
o ınh<br />
o a<br />
o ınh<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.i rac ho˘c liˆn tuc. Dˆi v´.i nh˜.ng thuˆc t´<br />
’<br />
´<br />
a e .<br />
u<br />
o ınh<br />
o<br />
o o<br />
A1 ,A2, ...An c´ thˆ l` thuˆc t´ dinh danh, r` .<br />
o e a<br />
o ınh .<br />
.<br />
.<br />
.<br />
’<br />
´<br />
´<br />
´<br />
e a<br />
a . o e o o a a o<br />
e<br />
dinh danh, ta tiˆn h`nh thu.c hiˆn ´nh xa tˆ t ca c´c gi´ tri c´ thˆ t´.i mˆt tˆp c´c sˆ nguyˆn<br />
e a<br />
.<br />
.<br />
. a ’ a<br />
. .<br />
.<br />
.o.ng liˆn kˆ.<br />
` `<br />
du<br />
e e<br />
’<br />
Dinh ngh˜ 2. (Khoang c´ch gi˜.a 2 bˆ gi´ tri trˆn tˆp thuˆc t´<br />
ıa<br />
a<br />
u<br />
o a . e a<br />
o ınh)<br />
.<br />
.<br />
.<br />
.<br />
’<br />
o<br />
y e<br />
a<br />
a<br />
u<br />
a<br />
e a<br />
o<br />
V´.i 2 bˆ t1 , t2 ∈ r, ta k´ hiˆu ρ(t1(X), t2(X)) l` khoang c´ch gi˜.a t1 v` t2 trˆn tˆp thuˆc<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.o.c x´c dinh nhu. sau<br />
t´ X ⊆ R, du . a .<br />
ınh<br />
ρ(t1 (X), t2(X)) = max(|t1 (Ai ) − t2 (Ai )|)/max(|t1(Ai ), t2(Ai )|), Ai ∈ X).<br />
´<br />
´<br />
´<br />
a<br />
o<br />
H`m max(x, y) l` h`m chon ra sˆ l´.n nhˆ t trong 2 sˆ x,y.<br />
a<br />
a a<br />
o o<br />
.<br />
o<br />
u<br />
ı<br />
o<br />
Tru.`.ng ho.p max(|t1 (Ai )|, |t2(Ai )|) = 0, t´.c t1 (Ai ) = t2 (Ai ) = 0 th` ta qui u.´.c<br />
.<br />
|t1(Ai ) − t2 (Ai)|/max(|t1 (Ai )|, |t2(Ai )|) = 0.<br />
’<br />
´<br />
´ ´<br />
’<br />
o a . e a<br />
o ınh o e<br />
a a<br />
o ’ a o o a<br />
Khoang c´ch gi˜.a 2 bˆ gi´ tri trˆn tˆp thuˆc t´ c´ thˆ coi l` h`m sˆ cua c´c dˆi sˆ l`<br />
a<br />
u<br />
.<br />
.<br />
.<br />
c´c bˆ gi´ tri cua quan hˆ v` tˆp c´c thuˆc t´<br />
a o a . ’<br />
e a a a<br />
o ınh.<br />
.<br />
.<br />
.<br />
.<br />
´ t´ chˆ t cua h`m khoang c´ch ρ(t1 (X), t2(X)).<br />
´ ’<br />
’<br />
Mˆt sˆ ınh a<br />
o o<br />
a<br />
a<br />
.<br />
´<br />
’<br />
’<br />
’<br />
Dinh ngh˜ khoang c´ch ρ(t1 (X), t2(X)) nˆu trˆn thoa m˜n c´c t´ chˆ t cua h`m khoang<br />
ıa<br />
a<br />
e<br />
e<br />
a a ınh a ’ a<br />
.<br />
c´ch:<br />
a<br />
1. ρ(t1(X), t2(X))<br />
<br />
u y<br />
0 v´.i t1 , t2 , X t`y ´<br />
o<br />
<br />
2. ρ(t1(X), t2(X)) = 0 ⇔ t1 (X) = t2 (X)<br />
3. ρ(t1(X), t2(X))<br />
<br />
ρ(t1 (X), t3(X)) + ρ(t3(X), t2(X))<br />
<br />
´<br />
4. Nˆu X ⊆ Y th` ρ(t1 (X), t2(X))<br />
e<br />
ı<br />
<br />
ρ(t1 (Y ), t2(Y ))<br />
<br />
5. ρ(t1(XY ), t2(XY )) = max(ρ(t1(X), t2(X)), ρ(t1(Y ), t2 (Y ))).<br />
<br />
.<br />
´<br />
’.<br />
´<br />
’<br />
ˆ<br />
ˆ<br />
ˆ<br />
ˆ<br />
`<br />
ˆ<br />
XAY DU NG CAY QUYET DINH SU DUNG PHU THUO C HAM XAP XI<br />
.<br />
.<br />
.<br />
.<br />
.<br />
<br />
181<br />
<br />
´<br />
Dinh ngh˜ 3. (Phu thuˆc h`m xˆ p xı loai hai - Type II Approximate Functional Depenıa<br />
o a<br />
a ’ .<br />
.<br />
.<br />
.<br />
dency)<br />
`<br />
’ ’<br />
o o<br />
o<br />
o a<br />
a .<br />
a o<br />
a<br />
Gia su. X, Y ⊆ R v` v´.i mˆt sˆ δ cho tru.´.c, 0 δ < 1, ta n´i r˘ ng X x´c dinh h`m Y<br />
. ´<br />
.c δ (ho˘c n´i r˘ ng X, Y c´ phu thuˆc h`m xˆ p xı loai hai m´.c δ), k´ hiˆu l` X ≈> Y<br />
`<br />
´<br />
a o a<br />
o<br />
o a<br />
a ’ .<br />
u<br />
y e a<br />
m´<br />
u<br />
δ<br />
.<br />
.<br />
.<br />
.<br />
´<br />
nˆu v´.i moi c˘p bˆ t1 , t2 ∈ r, m` ρ(t1 (X), t2(X)) ε th` ta c˜ng c´ ρ(t1 (Y ), t2 (Y )) ε.<br />
e o<br />
a<br />
ı<br />
u<br />
o<br />
. a o<br />
.<br />
.<br />
’<br />
`<br />
`<br />
´<br />
´<br />
e<br />
e<br />
e e<br />
o a<br />
a ’ a<br />
o a<br />
a ’ .<br />
Mˆnh dˆ 1. (Diˆu kiˆn dˆ phu thuˆc h`m xˆ p xı l` phu thuˆc h`m xˆ p xı loai hai)<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. approx(X → Y ) l` mˆt phu thuˆc h`m xˆ p xı v´.i dˆ xˆ p xı ε. Phu thuˆc h`m<br />
´ ’ o o a ’<br />
´<br />
’ ’<br />
a o<br />
o a<br />
a<br />
o a<br />
Gia su<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
´<br />
a ’<br />
xˆ p xı approx(X → Y ) l` phu thuˆc h`m xˆ p xı loai hai m´.c δ = ε(X ≈>δ Y ) khi v` chı khi<br />
a ’<br />
a .<br />
o a<br />
a ’ .<br />
u<br />
.<br />
u<br />
´.ng v´.i ε v´.i moi c˘p bˆ t1 , t2 ∈ r , m` ρ(t1 (X), t2(X)) ε.<br />
o<br />
o<br />
a<br />
. a o<br />
. .<br />
´<br />
` e<br />
´<br />
Ta thˆ y mˆnh dˆ trˆn ho`n to`n d´ng v´.i theo dinh ngh˜ v` c´c t´ chˆ t cua phu<br />
a<br />
e<br />
e<br />
a<br />
a<br />
u<br />
o<br />
ıa a a ınh a ’<br />
.<br />
.<br />
.<br />
´<br />
thuˆc h`m xˆ p xı loai hai.<br />
o a<br />
a ’ .<br />
.<br />
’<br />
´<br />
Thuˆt to´n 1. Kiˆ m tra phu thuˆc h`m xˆ p xı loai hai<br />
a<br />
a<br />
e<br />
o a<br />
a ’ .<br />
.<br />
.<br />
.<br />
.´.c 1: Xˆy du.ng hˆ xˆ p xı m´.c δ cua r: E .<br />
’<br />
a<br />
e a ’ u<br />
Bu o<br />
rδ<br />
.<br />
. ´<br />
.´.c 2: V´.i mˆi E(δ)i,j ∈ Erδ (v´.i 1 i < j m) lˆn lu.o.t kiˆ m tra diˆu kiˆn<br />
˜<br />
’<br />
`<br />
`<br />
e<br />
e<br />
Bu o<br />
o<br />
o<br />
o<br />
a<br />
e<br />
.<br />
.<br />
X ⊆ E(δ)i,j ) ⇒ (Y ⊆ E(δ)i,j ).<br />
’<br />
`<br />
´<br />
´ a<br />
+ Nˆu c´ tˆ n tai X ⊆ E(δ)i,j v` Y<br />
e o o .<br />
a<br />
E(δ)i,j th` d`.ng viˆc kiˆ m tra v` kˆt luˆn r khˆng<br />
ı u<br />
e<br />
e<br />
a e<br />
o<br />
.<br />
.<br />
.c δ.<br />
´<br />
’<br />
thoa phu thuˆc h`m xˆ p xı loai hai m´<br />
o a<br />
a ’ .<br />
u<br />
.<br />
.<br />
´<br />
`<br />
´<br />
’<br />
a<br />
+ Nˆu v´.i moi E(δ)i,j ∈ Erδ thoa m˜n diˆu kiˆn (X ⊆ E(δ)i,j ) ⇔ (Y ⊆ E(δ)i,j ) th` kˆt<br />
e o<br />
e<br />
e<br />
ı e<br />
.<br />
.<br />
.c δ.<br />
´<br />
’<br />
luˆn r thoa phu thuˆc h`m xˆ p xı loai hai m´<br />
a<br />
o a<br />
a ’ .<br />
u<br />
.<br />
.<br />
.<br />
´<br />
´<br />
’ .<br />
a<br />
e .<br />
o a<br />
a ’ .<br />
Thuˆt to´n 2. Xˆy du.ng cˆy quyˆt dinh su. dung phu thuˆc h`m xˆ p xı loai hai<br />
a<br />
a<br />
a<br />
.<br />
.<br />
.<br />
.<br />
. (Examples) v` x´c dinh c´c phu thuˆc h`m xˆ p xı loai hai du.o.c t´<br />
˜<br />
`<br />
´ ’ .<br />
’<br />
a a .<br />
Dˆu v`o: Mˆu thu<br />
a a<br />
a<br />
a<br />
o a<br />
a<br />
. ınh<br />
.<br />
.<br />
. liˆu mˆu.<br />
˜<br />
trˆn tˆp d˜ e<br />
e a u .<br />
a<br />
.<br />
`<br />
´<br />
e<br />
o a<br />
Dˆu ra: Cˆy quyˆt dinh du.a trˆn phu thuˆc h`m.<br />
a<br />
a<br />
e .<br />
.<br />
.<br />
.<br />
.´.c 1. X´c dinh nhiˆu cua mˆu thu. (M ajorityClass(Examples )).<br />
˜<br />
˜<br />
’<br />
’<br />
a .<br />
e<br />
a<br />
Bu o<br />
i<br />
.´.c 2. Chon c´c phu thuˆc h`m xˆ p xı c´ m´.c dˆ nhiˆu trong m´.c xˆ p xı δ,<br />
˜<br />
´ ’ o u o<br />
´<br />
e<br />
u a ’<br />
Bu o<br />
o a<br />
a<br />
.<br />
. a<br />
.<br />
.<br />
approx(X → Y ) δ.<br />
.´.c 3. Kiˆ m tra phu thuˆc h`m xˆ p xı loai hai cho tˆp phu thuˆc h`m xˆ p xı t` du.o.c o.<br />
’<br />
´<br />
´<br />
e<br />
o a<br />
a ’ .<br />
a<br />
o a<br />
a ’ ım<br />
Bu o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. ’<br />
.´.c 2 (X ≈>δ Y ).<br />
Bu o<br />
´<br />
´<br />
´<br />
’<br />
a<br />
+ Chon phu thuˆc h`m xˆ p xı loai hai c´ m´.c xˆ p xı nho nhˆ t (X ≈>min(δ) Y )<br />
o a<br />
a ’ .<br />
o u a ’<br />
.<br />
.<br />
.<br />
´<br />
´<br />
´<br />
o o a<br />
+ Tao cˆy quyˆt dinh v´.i gˆc l` phu thuˆc h`m xˆ p xı v`.a chon<br />
a<br />
e .<br />
o a<br />
a ’ u<br />
.<br />
.<br />
.<br />
.<br />
DT = BuildDecisionT ree(Examplei, X ≈>min(δ) Y, M ajorityClass(examples)).<br />
˜<br />
´<br />
’ a<br />
o a .<br />
o a<br />
a ’ ınh<br />
+ V´.i mˆi gi´ tri vi cua tˆp phu thuˆc h`m xˆ p xı, t´<br />
o<br />
.<br />
.<br />
.<br />
˜<br />
’<br />
• Mˆu thu. Examplei = {Ki ⊆ Example v´.i X ≈>minδ Y = vi }<br />
a<br />
o<br />
• Subtree = BuildDecisionT ree(Examplei, X ≈>minδ Y, M ajorityClass(examples))<br />
a a<br />
• Thˆm mˆt nh´nh Subtree v`o cˆy v´.i nh˜n l` vi<br />
e<br />
o<br />
a<br />
a a o<br />
.<br />
´<br />
’<br />
’ ’<br />
o a<br />
a<br />
e<br />
V´ du 1. Gia su. ta c´ tˆp huˆ n luyˆn nhu. sau (Bang 1)<br />
ı .<br />
.<br />
.<br />
’ xˆy du.ng c´c phu thuˆc h`m xı loai hai v´.i m´.c xˆ p xı δ = 0.05 nhu.<br />
´<br />
’ .<br />
Ch´ng ta c´ thˆ a<br />
u<br />
o e<br />
u a ’<br />
a<br />
o a<br />
o<br />
.<br />
.<br />
.<br />
sau.<br />
<br />
˜ ´.<br />
ˆ<br />
ˆ<br />
VU DU C THI, TR` N QUANG DIEU<br />
A<br />
.<br />
<br />
182<br />
<br />
’<br />
´<br />
´<br />
Ta thˆ y gi˜.a thuˆc t´ Tuˆ i, Hˆ sˆ lu.o.ng c´ mˆi tu.o.ng quan v´.i ch´.c danh. V´.i<br />
a<br />
u<br />
o ınh<br />
o<br />
e o<br />
o o<br />
o<br />
u<br />
o<br />
.<br />
. ´<br />
.i phu thuˆc h`m xˆ p xı:<br />
’<br />
´<br />
`<br />
´<br />
o a<br />
a ’<br />
e<br />
e o o<br />
δ = 0.05 ta kiˆ m tra diˆu kiˆn dˆi v´<br />
e<br />
.<br />
.<br />
.<br />
<br />
’<br />
Bang 1<br />
STT<br />
<br />
’<br />
Tuˆ i<br />
o<br />
<br />
HSL<br />
<br />
Ngach CC<br />
.<br />
e<br />
ınh<br />
Nghiˆn c´.u viˆn ch´<br />
e u<br />
.u viˆn ch´<br />
e<br />
ınh<br />
Nghiˆn c´<br />
e u<br />
e<br />
Nghiˆn c´.u viˆn<br />
e u<br />
e<br />
Nghiˆn c´.u viˆn<br />
e u<br />
e<br />
ınh<br />
Nghiˆn c´.u viˆn ch´<br />
e u<br />
.u viˆn<br />
e<br />
Nghiˆn c´<br />
e u<br />
e<br />
Nghiˆn c´.u viˆn<br />
e u<br />
.u viˆn<br />
e<br />
Nghiˆn c´<br />
e u<br />
e<br />
Nghiˆn c´.u viˆn<br />
e u<br />
<br />
HV<br />
<br />
Ho`n th`nh<br />
a<br />
a<br />
cˆng viˆc<br />
o<br />
e<br />
.<br />
C´<br />
o<br />
C´<br />
o<br />
C´<br />
o<br />
Khˆng<br />
o<br />
C´<br />
o<br />
Khˆng<br />
o<br />
C´<br />
o<br />
Khˆng<br />
o<br />
Khˆng<br />
o<br />
<br />
´<br />
Tiˆn s˜ khoa hoc<br />
e ı<br />
.<br />
´<br />
Tiˆn s˜<br />
e ı<br />
´<br />
Tiˆn s˜<br />
e ı<br />
Thac s˜<br />
. ı<br />
´<br />
Tiˆn s˜<br />
e ı<br />
Thac s˜<br />
. ı<br />
´<br />
Tiˆn s˜<br />
e ı<br />
Thac s˜<br />
. ı<br />
Thac s˜<br />
. ı<br />
’<br />
’<br />
o<br />
o<br />
e o<br />
o<br />
e o<br />
V´.i c˘p h`ng 1, 2 ta c´ ρ(t1 (Tuˆ i, Hˆ sˆ lu.o.ng), t2 (Tuˆ i, Hˆ sˆ lu.o.ng)) = 0 < 0.05.<br />
o a a<br />
.<br />
. ´<br />
. ´<br />
.o.c ρ(t1 (C´ thˆ giao nhiˆm vu), t2 (C´ thˆ giao nhiˆm vu)) = 0 < 0.05.<br />
’<br />
’<br />
o e<br />
e<br />
o e<br />
e<br />
Ta c˜ng t´ du .<br />
u<br />
ınh<br />
.<br />
.<br />
.<br />
.<br />
.o.ng tu. ta c˜ng kiˆ m tra dˆ d`ng v´.i c´c cˆt c`n lai, vˆy ta c´ phu thuˆc h`m Tuˆ i,<br />
’<br />
’<br />
˜ a<br />
Tu<br />
u<br />
e<br />
e<br />
o a o o .<br />
a<br />
o<br />
o a<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.o.ng ≈><br />
’<br />
o e<br />
e<br />
hˆ sˆ lu<br />
e o<br />
0.05 C´ thˆ giao nhiˆm vu.<br />
.<br />
.<br />
. ´<br />
´<br />
´<br />
´<br />
o<br />
a ınh a<br />
a<br />
e<br />
Sau khi t` tˆ t ca c´c phu thuˆc h`m xˆ p xı ph` ho.p v´.i qu´ tr` xˆy du.ng cˆy quyˆt<br />
ım a ’ a<br />
o a<br />
a ’ u .<br />
.<br />
.<br />
.<br />
’ xˆy du.ng du.o.c cˆy quyˆt dinh nhu. sau (H` 1).<br />
´ .<br />
dinh, ta c´ thˆ a<br />
o e<br />
e<br />
ınh<br />
.<br />
.<br />
. a<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
8<br />
9<br />
<br />
>40<br />
>40<br />
>40<br />
>40<br />
30-40<br />
30-40<br />