Ba điểm cực trị tạo thành tam giác
-
Mời các bạn tham khảo tài liệu Tam giác trong các bài toán liên quan đến khảo sát hàm số sau đây để nắm bắt được những kiến thức về cách giải những bài toán liên quan tới ba điểm cực trị tạo thành tam giác; hai điểm cực trị và một điểm khác tạo thành một tam giác; giao điểm của các đồ thị và một điểm khác tạo thành tam giác; tiếp tuyến cùng với các trục tọa đô tạo thành tam giác; tiếp tuyến cùng với các tiệm cận tạo thành tam giác.
14p khaiancut_2000 30-03-2015 145 20 Download
-
Câu I (2.0 điểm) Cho hàm số y = x4 - 2mx2 + m-1 (1) , với m là tham số thực. 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m =1. 2.Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác có bán kính đường tròn ngoại tiếp bằng 1. Câu II : ( 2, 0 điểm) Giải các phương trình 1. 4sin3 x.cos3x + 4cos3 x.sin 3x + 3 3cos4x = 3 2. 2 2 3 3 3 log (x +5x +6) +log (x +9x...
6p vantuannb92 12-03-2011 327 64 Download
-
Tính đơn điệu của hàm số Định lý: (điều kiện cần) Định lý: (điều kiện đủ) Định lý mở rộng B. Cực tri của hàm số: Định lý: Định lý: (dấu hiệu thứ nhất) Định lý : (dấu hiệu thứ hai) Định lý Bài 1: Cho hàm số y = x 4 − 2mx 2 + m (1) . Tìm m để đồ thị hàm số (1) có ba điểm cực trị; đồng thời ba điểm cực trị đó tạo thành một tam giác có diện tích bằng 32 2
15p dalytn 19-09-2010 956 412 Download
-
Tính đơn điệu của hàm số Định lý: (điều kiện cần) Định lý: (điều kiện đủ) Định lý mở rộng B. Cực tri của hàm số: Định lý: Định lý: (dấu hiệu thứ nhất) Định lý : (dấu hiệu thứ hai) Định lý Bài 1: Cho hàm số y = x 4 − 2mx 2 + m (1) . Tìm m để đồ thị hàm số (1) có ba điểm cực trị; đồng thời ba điểm cực trị đó tạo thành một tam giác có diện tích bằng 32 2
5p tominhthuan 21-08-2010 930 257 Download