Giải phương trình Diophante
-
Đề thi kết thúc học phần học kì 2 môn Phương trình nghiệm nguyên năm 2020-2021 có đáp án - Trường ĐH Đồng Tháp là tài liệu tham khảo được TaiLieu.VN sưu tầm để gửi tới các em học sinh đang trong quá trình ôn thi kết thúc học phần, giúp sinh viên củng cố lại phần kiến thức đã học và nâng cao kĩ năng giải đề thi. Chúc các em học tập và ôn thi hiệu quả!
2p namkimcham10 04-07-2022 49 4 Download
-
Đề tài đã hệ thống lại lý thuyết về thặng dư, thặng dư bình phương; hoàn thiện về phương trình thặng dư và cách giải; tập trung trình bày một vài ứng dụng của thặng dư và thặng dư bình phương; tổng hợp một số bài toán thặng dư, thặng dư bình phương trong các kì thi Olympic Toán các nước.
10p closefriend04 17-10-2021 56 7 Download
-
Mục đích nghiên cứu của luận văn là nghiên cứu và phát triển năng lực, kỹ năng giải các toán đưa về giải bằng phương trình Diophant; góp phần nâng cao chất lượng dạy học môn toán tại các trường THCS, đặc biệt trong công tác bồi dưỡng học sinh giỏi, giúp học sinh rèn luyện, củng cố năng lực và giải quyết các bài toán có nội dung hay và khó trong các kì thi học sinh giỏi, thi vào các trường THPT chuyên.
87p ganuongmuoixa 10-08-2021 24 4 Download
-
Luận văn với mục tiêu trình bày các kiến thức cơ bản của số học; một số phương pháp giải hệ phương trình Diophant hai biến và một số ứng dụng.
30p banhbeobeobeobanh 21-04-2021 41 4 Download
-
Số học là một bộ môn toán học có đối tượng nghiên cứu là các số nguyên. Không có gì đơn giản và quen thuộc hơn đối với chúng ta là các số nguyên. Ngày nay, với sự phát triển của khoa học và công nghệ, đặc biệt là công nghệ số hóa, đã đòi hỏi con người không ngừng nghiên cứu và khám phá các quy luật, các thuật giải cho các bài toán liên quan tới số nguyên. Luận văn sẽ nghiên cứu sâu hơn về vấn đề này.
49p capheviahe26 02-02-2021 14 3 Download
-
Trong các kì thi học sinh giỏi toán các cấp, Olympic Toán sinh viên, các bài toán liên quan tới phương trình Diophant (dạng tuyến tính và phi tuyến) thường xuyên được đề cập. Những dạng toán này thường được xem là thuộc loại khó vì phần kiến thức về phương trình Diophant tổng quát không nằm trong chương trình chính thức của giáo trình Số học và Đại số bậc trung học phổ thông.
82p capheviahe26 02-02-2021 28 6 Download
-
Khái niệm về số cân bằng được tìm ra và nghiên cứu đầu tiên bởi Behera và Panda. Sau đó, rất nhiều tính chất đẹp của số cân bằng được tìm thấy. Năm 2012, Keskin và Karaatli đã tìm ra một số tính chất mới của số cân bằng, số tam giác chính phương. Bên cạnh việc nghiên cứu các tính chất của số cân bằng, nhiều nhà toán học cũng đã nghiên cứu việc sử dụng các số cân bằng để giải một số dạng phương trình Diophant.
62p capheviahe26 02-02-2021 19 7 Download
-
Như chúng ta đã biết các phương trình Diophante có dạng Dy2 = Ax4 +B đã được nghiên cứu rộng rãi với nhiều phương pháp khác nhau. Có rất nhiều ý tưởng đã được phát triển để nghiên cứu dạng phương trình này. Luận văn sẽ đi sâu nghiên cứu về vấn đề này.
47p capheviahe26 02-02-2021 17 2 Download