intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

63 Đề thi thử Đại học 2011 - Đề số 50

Chia sẻ: Pham Xuân Dương | Ngày: | Loại File: PDF | Số trang:7

76
lượt xem
11
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu '63 đề thi thử đại học 2011 - đề số 50', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: 63 Đề thi thử Đại học 2011 - Đề số 50

  1. 63 Đề thi thử Đại học 2011 4 16 2    3 333 d  M 2 , (P)   3 2 2 2 1   2   2  2 4 5  Tọa độ điểm M là M   ; ;   3 3 3 2  1 2 7 N là giao điểm    và (P)  1  t  4  4t  2  4t  3  0  t   N  ; ;  3  3 3 3 Câu VII.b: f  x   f 0 1  3x  1  x  1  2x  1  x  3 3 1  3x  1  2x f '  0   lim  lim  lim  lim 2 2 x2 x 0 x x x 0 x 0 x0 x0 1  3x  1  x  3 3x 2  x 3  lim lim x2 x 0 2  x 3 1  3x   3 1  3x.1  x   1  x   x 0 2 2     3  x  lim  1 2 2 x 0 3 1  3x   1  3x.1  x   1  x  3 1  2x  1  x  x 2 1 1  lim 2  lim  lim 2 x  1  2x  1  x   x 0 1  2x  1  x  2 x x 0 x 0   1 1  f '  0   1    2 2 THỬ SỨC TRƯỚC KÌ THI THTT SỐ 402-12/2010 ĐỀ SỐ 03 Thời gian làm bài 180 phút PHẦN CHUNG Câu I: Cho hàm số: y   x 4  2  m  1 x 2  2m  1 . 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1. 2) Xác định m để đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt có hoành độ lập thành cấp số cộng. Câu II: 1) Giải phương trình: 2cos 2 2x  cos 2x.sin 3x  3sin 2 2x  3 6x 2  3xy  x  y  1 2) Giải hệ phương trình:  2 2  x  y  1. -245- http://www.VNMATH.com
  2. 63 Đề thi thử Đại học 2011 Câu III: 2 x Cho hàm số f  x   A.3  B . Tìm các số A, B sao cho f '  0   2 và  f  x dx  12 1 Câu IV: Trong mặt phẳng  P  cho hình vuông ABCD có cạnh bằng a. S là một điểm bất kì nằm trên đường thẳng At vuông góc với mặt phẳng  P  tại A. Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD khi SA = 2a. Câu V: x sin x  2cos 2 trên đoạn  0;   . Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f  x    2 x   cos x  2sin 2 PHẦN RIÊNG Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình chuẩn Câu VI.a: 1) Trong mặt phẳng tọa độ (Oxy) cho điểm A 1;1 và đường thẳng (d) có phương trình 4x  3y  12  0 . Gọi B, C là giao điểm của (d) với các trục Ox, Oy. Xác định tọa độ trực tâm của tam giác ABC. 2) Trong không gian với hệ tọa độ Oxyz, từ điểm P  2;3; 5  hạ các đường thẳng vuông góc với các mặt phẳng tọa độ. Viết phương trình mặt phẳng đi qua chân các đường vuông góc đó. Câu VII.a: 24 5 5   Chứng minh rằng số phức z   1  cos  isin  có phần ảo bằng 0. 6 6  B. Theo chương trình nâng cao Câu VI.b: 1) Cho đường tròn  C  : x 2  y 2  6x  2y  1  0 . Viết phương trình đường thẳng d song song với đường thẳng x  2y  4  0 và cắt  C  theo một dây cung có độ dài bằng 4. 2) Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng x 1 y 1 z x 1 y  2 z   và d 2 :  . d1 : 2 1 1 1 2 1 Viết phương trình mặt phẳng (P) song song với mặt phẳng  Q  : x  y  2z  3  0 sao cho (P) cắt d1, d2 theo một đoạn thẳng có độ dài nhỏ nhất. Câu VII.b: 4 x  y1  3.4 2y 1  2 Giải hệ phương trình   x  3y  2  log 4 3 HƯỚNG DẪN GIẢI VÀ ĐÁP SỐ -246- http://www.VNMATH.com
  3. 63 Đề thi thử Đại học 2011 PHẦN CHUNG Câu I: 1) Tự giải 2) Giao điểm với trục hoành x 4  2  m  1 x 2  2m  1  0 (*) Đặt t = x2, ta có phương trình: t 2  2  m  1 t  2m  1  0 (**) (*) có 4 nghiệm  (**) có 2 nghiệm dương phân biệt  m2  0 Δ '  0 1     S  0  2  m  1  0  m   , m  0 2 P0  2m  1  0   2 2 Với điều kiện này (**) có nghiệm t1  x1 ; t 2  x 2 (t2 > t1)  4 nghiệm (*): x 2 , x1 , x1 , x 2 Dãy này lập thành cấp số cộng khi: x 2  x1  x1    x1   x 2  3x1 Đặt x1  α  x 2  3α  m4 2  x1  x 2  10α 2 2 2 2  m  1  10α 2  m 1   2  2 2   2m  1  9    9m  32m  16  0   4 x 1 x 2  9α 4 2m  1  9α 4 5 m   9  4 Vậy m = 4 hoặc m   9 Câu II: 1) 2 cos 2 2x  cos 2x.sin 3x  3sin 2 2x  3  2cos 2 2x  cos 2x.sin 3x  3cos 2 2x  cos 2x  sin 3x  cos 2x   0  cos 2x  0  sin 3x  cos 2x  0 π π kπ  kπ  x    k  Z   Với cos2x = 0  2x  2 42   k2   3x   2x  k2  x  10  5  Với sin 3x  cos 2x  0  sin 3x  sin    2x      2  k  Z    x    k2 2  3x   2x  k2    2 2  π kπ  x  4  2  π k2π Vậy phương trình có nghiệm  x    k  Z  10 5   x  π  k2 π  2 -247- http://www.VNMATH.com
  4. 63 Đề thi thử Đại học 2011  6x 2  3xy  x  y  1 1  2)  2 2  2  x  y  1.  1  6x 2  3xy  3x  2x  y  1   3x  1 2x  y  1  0 1  x  3    y  2x  1 22 1 Với x  , từ (2) suy ra: y   3 3  x  0  y 1 Với y  2x  1 , từ (2) suy ra: x   2x  1  1  5x  4x  0   2 2 2 x   4  y   3 5 5  Vậy hệ phương trình đã cho có 4 nghiệm: 1 2 2  1 2 2   4 3  0;1 ,  , ;  ,  ;   ;   3   5 5 3 3  3  Câu III:  f '  x   A.3x.ln 3  f  x   A.3x  B   A.3x f  x  dx   Bx  C  ln 3  2   f ' 0  2  A.ln 3  2 A  ln 3    Ta có:  2   6A   f  x  dx  12  ln 3  B  12  B  12  12  1 ln 2 3   2  A   ln 3 Vậy   B  12  12 ln 2 3   Câu IV: Tâm O của hình cầu ngoại tiếp hình chóp S.ABCD là trung điểm của SC. SC  SA 2  AC 2  4a 2  2a 2  a 6 SC a 6 R  2 2 3 4 πR  πa 3 6 V 3 Câu V: -248- http://www.VNMATH.com
  5. 63 Đề thi thử Đại học 2011 x sin x  2cos 2 x  0;   . f x   2 x   cos x  2sin 2 x x x Ta có: cos x  2sin  2sin 2  2sin  1 2 2 2  2 Xét hàm số g  t   2t 2  2t  1 t   0;  2  1 g '  t   4t  2  g '  t   0  t  2 1 3  2  g  0   1; g    ; g   2 2 2  2     2  g  t   0 t   0;   2 x    cos x  2sin  0 x  0;  . 2  2    f  x  liên tục trên đoạn  0;  .  2 x  x  x  x   cos x  sin  cos x  2sin     sin x  cos  sin x  2cos  2  2  2  2 f ' x    2 x   cos x  2sin  2  x 1  sin   2 f ' x    0 x  0;  . 2  2 x   cos x  2sin  2  GTLN f  x  = f  0   2 π 2 GTNN f  x  = f    1  2 2 PHẦN RIÊNG A. Theo chương trình chuẩn Câu VI.a: 1) A 1;1 B  3; 0  C  0; 4  Gọi H  x; y  là trực tâm tam giác ABC         BH   x  3; y  , CH   x; y  4  , AB   2; 1 , AC   1;3 -249- http://www.VNMATH.com
  6. 63 Đề thi thử Đại học 2011      x  3  3y  0  BH  AC BH.AC  0   x  3          2x   y  4   0 CH  AB  y  2 CH.AB  0   Vậy H  3; 2  2) Gọi I, J ,K lần lượt là chân các đường vuông góc tương ứng của P lên các mặt phẳng Oxy, Oyz, Oxz. Ta có: I  2;3; 0  , J  0;3; 5  , K  2;0; 5 Mặt phẳng  IJK  có dạng Ax  By  Cz  D  0 I, J, K thuộc mặt phẳng này nên: 1  A   4 D 2A  3B  D  0  1    3B  5C  D  0   B   D Chọn D = -60, suy ra A = 15, B = 10, C = -6. 6 2A  5C  D  0   1   C  10 D  Vậy  IJK  :15x  10y  6z  60  0 Câu VII.a: 24 k 24 24 5 5  5 5  5k 5k   k k 1  cos  i sin    C24  cos  isin    C24  cos  isin   6 6 6 6 6 6    k 0 k 0 24 24 5k 5k   C k cos k  i  C 24 sin 24 6 6 k 0 k 0 24 5k Phần ảo  C k sin 24 6 k 0 5  24  k   5k 5k 5k  C 24 k sin Ta có: Ck sin  C k sin  C k sin 0 24 24 24 24 6 6 6 6 24 5k Suy ra:  Ck sin 0 24 6 k 0 B. Theo chương trình nâng cao Câu VI.b: 2 2 1)  C  :  x  3   y  1  32 d song song với đường thẳng x  2y  4  0  d : x  2y  c  0 d cắt  C  theo một dây cung có độ dài bằng 4  d  I, d   32  22  5 32c  c4   5  c 1  5    c  6 5 Vậy d1 : x  2y  4  0 hoặc d 2 : x  2y  6  0 2) (P) song song với mặt phẳng  Q    P  : x  y  2z  m  0 -250- http://www.VNMATH.com
  7. 63 Đề thi thử Đại học 2011  x  1  2t  x 1 t   d1 :  y  1  t d 2 :  y  2  2t  zt  zt   (Q) giao với (d1): 1  2t  1  t  2t  m  0  t   m  M 1  2m; 1  m;  m  (Q) giao với (d2): 1  t  2  2t  2t  m  0  t  m  3  N  2  m; 4  2m; m  3  2 2 MN 2   m  3   m  3   32  2m 2  27  27 MinMN = 3 3 khi m = 0 Khi đó  P  : x  y  2z  0 Vậy  P  : x  y  2z  0 Câu VII.b:  4 x  y 1  3.4 2 y1  2 1    x  3y  2  log 4 3  2   4 Từ (2)  x  y  1  1  log 4 3  2y  log 4  2y 3 4 log 4  2 y  3.4 2 y1  2 Thay vào (1): 1  4 3 4 3  .42 y  .42 y  2 3 4 4 3t 4 Đặt t  42 y  t  0  ta có:   2  9t 2  24t  16  0  t  3t 4 3 4 1 411  4 2 y   y  log 4   log 4 3 3 2 322 33 11 (2)  x  2  log 4 3  3y  2  log 4 3   log 4 3   log 4 3 22 22 11 11 Vậy hệ có nghiệm duy nhất x   log 4 3 ; y   log 4 3 22 22 -251- http://www.VNMATH.com
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0