Bài giảng Cơ học ứng dụng: Tuần 6 - Nguyễn Duy Khương
lượt xem 1
download
Bài giảng Cơ học ứng dụng: Tuần 6 - Nguyễn Duy Khương cung cấp cho học viên những kiến thức về trạng thái ứng suất phẳng, ứng suất đơn trục và song trục, vòng tròn Mohr ứng suất, định luật Hooke cho trạng thái ứng suất tổng quát,... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Cơ học ứng dụng: Tuần 6 - Nguyễn Duy Khương
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ứng suất pháp lớn nhất ‐ Ứng suất chính Thành phần ứng suất pháp lớn nhất và nhỏ nhất, ta gọi đây là ứng suất chính. Để tìm thành phần ứng suất chính, ta lấy đạo hàm của x1 theo góc và cho đạo hàm này bằng không d x1 ( x y ) sin 2 2 xy cos 2 0 d Nên ta được: 2 xy tan 2 P x y Với P là góc chính. Từ công thức trên ta tính được hai giá trị P vì thế ta có hai góc chính. Một góc chính sẽ có một ứng suất chính lớn nhất và góc chính còn lại hơn kém 90o sẽ có ứng suất chính nhỏ nhất. Hai ứng suất chính này nằm trên hai mặt vuông góc nhau. CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Và theo công thức trên và hệ thức lượng trong tam giác vuông ta được Vì thế ta được x y 2 R xy 2 2 xy x y sin 2 P cos 2 P R 2R Thế công thức tính sin và cos vào công thức tính ứng suất pháp trên mặt nghiêng bất kỳ ta được x y x y 2 1 xy 2 2 2 Mà ta có điều kiện tổng ứng suất pháp trên hai mặt nghiêng bất kỳ là hằng số x y y 2 1 2 x y 2 x y 1 x xy 2 2 2 Giảng viên Nguyễn Duy Khương 1
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Nên ta được công thức tính ứng suất chính x y y 2 1,2 x xy 2 2 2 Ứng với góc chính 1 2 xy P tan 1 2 x y Ứng với góc chính này, ta dễ dàng tính được ứng suất tiếp trên phương chính xyP 0 Vậy ứng suất pháp trên phương chính đạt giá trị lớn nhất và nhỏ nhất thì ứng suất tiếp trên phương chính bằng không. CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Trường hợp đặc biệt Ứng suất đơn trục và song trục Mặt chính trong cả hai trường hợp này cũng chính là mặt vuông góc với trục x và y vì tan 2 P 0 P 0o ,90o Đồng thời trên hai mặt x và y ta thấy rằng ứng suất tiếp bằng không. Vì thế thành phần ứng suất chính cũng bằng thành phần ứng suất đơn trục và song trục. 1 max( x , y ) 2 min( x , y ) Giảng viên Nguyễn Duy Khương 2
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ứng suất trượt thuần túy Góc chính: tan 2 P P 45o ,135o Nếu ứng suất tiếp xy>0 thì 1 xy 2 xy CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ứng suất tiếp lớn nhất Để tìm thành phần ứng suất tiếp lớn nhất và phương của nó, ta lấy đạo hàm của x1y1 theo góc và cho đạo hàm này bằng không d x1 y1 ( x y ) cos 2 2 xy sin 2 0 d Nên ta được: x y tan 2 S 2 xy Với S là góc mà ứng suất tiếp trên mặt phẳng đó sẽ là lớn nhất. Từ công thức trên và công thức tính góc P ta thấy rằng 1 tan 2 S cot 2 P cos(2 S 2 P ) 0 tan 2 P S P 45o Giảng viên Nguyễn Duy Khương 3
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Trên mặt có ứng suất tiếp lớn nhất dương xy x y cos 2 S1 sin 2 S S P 45o R 2R 1 1 Nên ứng suất tiếp lớn nhất có giá trị y 2 max x xy 2 2 Hoặc tính theo ứng suất chính 1 và 2 1 2 max 2 Ứng suất pháp trên mặt nghiêng này là x y avg 2 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng ĐIỀU QUAN TRỌNG CẦN NHỚ • Ứng suất chính được xem như là ứng suất pháp lớn nhất và nhỏ nhất tại một điểm. • Khi trạng thái ứng suất được biểu diễn là ứng suất chính thì không có ứng suất tiếp tác dụng lên phần tử. • Trạng thái ứng suất tại một điểm có thể được biểu diễn bằng ứng suất tiếp lớn nhất. Trong trường hợp này ứng suất pháp trung bình sẽ tác dụng lên phần tử. • Phần tử được biểu diễn dưới dạng ứng suất tiếp lớn nhất và ứng suất pháp trung bình thì sẽ hợp một góc 45o với phần tử biểu diễn dưới dạng ứng suất chính. Giảng viên Nguyễn Duy Khương 4
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ví dụ: Cho phân tố chịu trạng thái ứng suất như hình vẽ. a) Tìm phương chính. b) Tìm ứng suất chính. c) Tìm ứng suất tiếp lớn nhất và ứng suất pháp tương ứng. CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Xác định các thành phần ứng suất Phân tố chịu ứng suất phẳng nên ta có ba thành phần ứng suất x 50 (MPa) y 10 (MPa) xy 40 (MPa) Tìm phương chính Theo công thức tính phương chính ta được 2 xy 2(40) 80 tan 2 P x y 50 (10) 60 P 26, 6o và 116, 6o Tìm ứng suất chính x y y 2 max,min x xy 2 2 2 20 (30) (40) 2 2 max 70 MPa và min 30 MPa Giảng viên Nguyễn Duy Khương 5
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Tìm ứng suất tiếp lớn nhất Theo công thức tính ứng suất tiếp lớn nhất ta được x y 2 max xy 2 2 (30) 2 (40) 2 max 50 MPa Hoặc ta có thể dùng công thức max min 70 (30) max 50 MPa 2 2 Công thức tính ứng suất pháp x y 70 (30) ' avg 20 MPa 2 2 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Vòng tròn Mohr ứng suất Trong kỹ thuật, đôi khi ta muốn có được kết quả nhanh của ứng suất ở mặt nghiêng bất kỳ, ta có thể sử dụng vòng tròn Mohr ứng suất. Có hai dạng vòng tròn Mohr ứng suất (trong tài liệu này dùng dạng 2: Dạng 1 là trục ứng suất tiếp hướng xuống, ứng với dạng này thì chiều dương của góc sẽ ngược chiều kim đồng hồ. Dạng 2 là trục ứng suất tiếp hướng lên, ứng với dạng này Christian Otto Mohr thì chiều dương của góc sẽ cùng chiều kim đồng hồ (1835‐1918) là kỹ sư xây dựng người Đức. Giảng viên Nguyễn Duy Khương 6
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Các bước xây dựng vòng tròn Mohr ứng suất: Bước 1 : Vẽ trục tọa độ - Vẽ trục nằm ngang hướng qua phải, trục thẳng đứng hướng lên trên. Bước 2 : Tìm tọa độ tâm C của vòng tròn Mohr Tâm vòng tròn C có tọa độ (avg , 0) với avg= (x +y)/2 Bước 3 : Tìm điểm P là điểm cực của vòng tròn Mohr Điểm cực P có tọa độ (y , xy) Bước 4 : Vẽ vòng tròn Mohr tâm C bán kính CP Chiều dương quy ước quay quanh điểm cực P là cùng chiều kim đồng hồ. Bán kính vòng tròn là 2 R xy x y 2 2 Bước 5 : Vẽ đường thẳng đi qua điểm cực P Từ P vẽ một đường thẳng nằm ngang làm đường chuẩn. Đường này cắt đường tròn tại điểm A, điểm này sẽ có tọa độ (x , xy). CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Nhận xét: • Vòng tròn Mohr sẽ cắt trục tại hai điểm, hai điểm này có ứng suất tiếp xy = 0. Vì thế hai điểm này là hai điểm ứng suất chính 1, 2. • Tại vị trí = max thì = avg • Các tính chất về góc đều phù hợp với các công thức trên. Các xác định trạng thái ứng suất một điểm dùng vòng tròn Mohr • Ta cần xác định thành phần ứng suất trên mặt nghiêng có phương góc . Từ P ta kẽ đường thẳng hợp với phương ngang một góc (chú ý chiều dương theo cùng chiều kim đồng hồ). Đường thẳng đó sẽ cắt vòng tròn tại một điểm. Điểm đó sẽ có tọa độ (x1 , x1y1) chính là trạng thái ứng suất của điểm trên mặt nghiêng . Giảng viên Nguyễn Duy Khương 7
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Các bước xây dựng vòng tròn Mohr ứng suất: x y xy P A x xy + B x y 1 1 x y 1 1 x 1 C x y avg 2 x 1 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng max Những điểm đặc biệt trên vòng tròn Mohr avg x y xy P S1 A x P1 max xy P2 S 2 2 C 1 2 x y avg 2 1 min avg Giảng viên Nguyễn Duy Khương 8
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ví dụ: Cho phân tố chịu trạng thái ứng suất như hình vẽ. Tìm phương chính, ứng suất chính, ứng suất tiếp cực đại và ứng suất pháp tương ứng bằng vòng tròn Morh CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Xác định các thành phần ứng suất Phân tố chịu ứng suất phẳng nên ta có ba thành phần ứng suất x 50 (MPa) y 10 (MPa) xy 40 (MPa) Xác định tâm C của vòng tròn Morh x y 50 (10) Tâm C có tọa độ (avg , 0) với avg 20 MPa 2 2 Xác định điểm cực P của vòng tròn Morh Điểm cực P có tọa độ (y , xy) = (-10 , 40) Xác định bán kính R=CP y 2 50 (10) 2 R CP x xy (40) 50 2 2 2 2 Dùng mối quan hệ hình học trên đường tròn, ta sẽ có được những kết quả cần thiết Giảng viên Nguyễn Duy Khương 9
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng 40 MPa 40 tan 2 P1 P A 50 MPa 30 P1 P1 26, 6o 40 2 P1 C 30 70 MPa CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Tính ứng suất trên mặt nghiêng 60o bằng vòng tròn Mohr AC 50 AB 40 40 40 MPa sin P A 50 MPa 50 53,13o 60o CD CE cos(120o ) 40 19, 64 120o DE CE sin(120o ) C D 45,98 B E avg CD 39, 64 E DE 45,98 Kiểm tra lại bằng công E thức !!! Giảng viên Nguyễn Duy Khương 10
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Định luật Hooke cho trạng thái ứng suất tổng quát Giả thiết phân tố sử dụng vật liệu liên tục, đồng nhất, đẳng hướng. Quan hệ giữa biến dạng và ứng suất x y z 1 x xy xy E G 1 y y x z xz xz E G z z x y 1 yz yz E G Với E là hệ số mô‐đun đàn hồi, là hệ số Poisson G là hệ số mô‐đun trượt đàn hồi E G 2(1 ) CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Định luật Hooke cho trạng thái ứng suất phẳng Do trạng thái ứng suất phẳng nên z=0, xz=0, yz=0 1 x x y E 1 y y x E z E x y xy xy G Với E là hệ số mô‐đun đàn hồi, là hệ số Poisson E G là hệ số mô‐đun trượt đàn hồi G 2(1 ) Giảng viên Nguyễn Duy Khương 11
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng Ví dụ: Cho phân tố chịu trạng thái ứng suất như hình vẽ biết E=2e3 MPa, =0,5. a) Tìm các thành phần biến dạng theo trục x, y, z b) Tìm các thành phần biến dạng theo phương 60o c) Tìm biến dạng trượt cực đại CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng a) Phân tố chịu ứng suất phẳng nên ta có ba thành phần ứng suất x 50 (MPa) y 10 (MPa) xy 40 (MPa) Do trạng thái ứng suất phẳng nên z=0, xz=0, yz=0 1 1 5 x x y 50 0,3 (10) 2, 65 104 E 2 10 1 1 y y x 10 0,3 50 1, 25 104 E 2 105 z x y 0,3 5 50 (10) 6 105 E 2 10 xy 40 xy 5, 2 104 G 76923 E 2 105 G 76923 MPa 2(1 ) 2(1 0,3) Giảng viên Nguyễn Duy Khương 12
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng b) Theo phương 60o ta có các thành phần ứng suất dựa vào vòng tròn Morh hoặc công thức tính ứng suất trên mặt nghiêng ta được x 39, 64 MPa 1 y x + y x 50 10 39, 64 0,36 MPa 1 1 x y 45,98 MPa 1 1 1 1 5 x x1 y1 39, 64 0,3 (0,36) 1,98 104 1 E 2 10 1 1 y1 y1 x1 0,36 0,3 39, 64 0,58 104 E 2 105 0,3 5 z1 x1 y1 39, 64 0,36 6 105 E 2 10 x y 45,98 x y 1 1 5,98 104 1 1 G 76923 CHƯƠNG 4 Ứng suất và biến dạng 3. Trạng thái ứng suất phẳng c) Biến dạng trượt lớn nhất sẽ tương ứng với ứng suất tiếp lớn nhất max 50 MPa max 50 max 6,5 104 G 76923 Giảng viên Nguyễn Duy Khương 13
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Đường cong vật liệu thép trong thí nghiệm kéo CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Trong thí nghiệm kéo vật liệu, ta đang quan tâm đến miền đàn hồi. Để kết cấu vẫn còn hoạt động tốt thì kết cấu không được đạt đến giới hạn chảy của vật liệu. Giới hạn này ta gọi là giới hạn bền của vật liệu Ta cần tính toán sao cho ứng suất không vượt quá ứng suất cho phép (ứng suất chảy dẻo của vật liệu). Ứng suất cho phép ký hiệu [] và tìm từ thí nghiệm kéo của vật liệu. Để đảm bảo vật thể làm việc an toàn, ứng suất lớn nhất của các điểm thuộc vật khảo sát phải thỏa mãn điều kiện: max [ ] Ta gọi công thức trên là điều kiện bền của vật liệu Giảng viên Nguyễn Duy Khương 14
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền 1. Giả thuyết ứng suất tiếp lớn nhất Giả thuyết bền này còn có hai tên gọi khác là giả thuyết bền thứ III và giả thuyết bền Tresca. Theo giả thuyết này thì ứng suất tiếp là yếu tố quyết định sự phá hủy của vật liệu. Do vậy hai trạng thái ứng suất khác nhau sẽ có độ bền như nhay khi hai giá trị ứng suất tiếp lớn nhất bằng nhau. Công thức tính ứng suất tương đương ở trạng thái ứng suất tổng quát theo giả thuyết bền III là Henri Édouard Tresca (1814‐1885) là kỹ sư cơ khí người Pháp. Là cha đẻ tdIII max( 1 2 , 2 3 , 1 3 ) của lĩnh vực biến dạng dẻo bằng nhiều thí nghiệm bắt đầu năm 1864. CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Ở trạng thái ứng suất phẳng Công thức tính ứng suất lớn nhất là : x y max min 2 max xy 2 Hoặc max 2 2 Vậy ta sẽ có ứng suất tương đương theo giả thuyết bền III tdIII 2 max Điều kiện bền theo giả thuyết bền III y 4 xy2 [ ] 2 tdIII [ ] x Hoặc max min [ ] Giảng viên Nguyễn Duy Khương 15
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Trường hợp đặc biệt • Ứng suất đơn trục tdIII 2 max x Điều kiện bền x [ ] • Ứng suất trượt thuần túy tdIII 2 max 2 xy [ ] Điều kiện bền xy 2 • Ứng suất phẳng đặc biệt tdIII x2 4 xy2 x x Điều kiện bền x2 4 xy2 [ ] CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền 2. Giả thuyết thế năng biến đổi hình dạng Giả thuyết bền này còn có tên gọi khác là giả thuyết năng lượng, giả thuyết bền thứ IV và giả thuyết bền Von‐Mises. Theo giả thuyết này thì yếu tố chủ yếu khiến vật bị phá hủy là phần năng lượng làm cho vật bị thay đổi về hình dáng. Công thức tính ứng suất tương đương ở trạng thái ứng suất tổng quát theo giả thuyết bền IV là Richard Edler von Mises (1883‐1953) là nhà khoa học và toán học trong lĩnh 1 tdIV 1 2 2 3 1 3 vực cơ học vật rắn, cơ học 2 2 2 lưu chất, khí động học … 2 Giảng viên Nguyễn Duy Khương 16
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Ở trạng thái ứng suất phẳng Ứng suất chính x y y 2 1,2 x xy 2 2 2 Ứng suất tương đương theo giả thuyết bền IV tdIV 12 22 1 2 Điều kiện bền theo giả thuyết bền IV tdIV [ ] 12 22 1 2 [ ] CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Trường hợp đặc biệt • Ứng suất đơn trục tdIV x Điều kiện bền x [ ] • Ứng suất trượt thuần túy tdIV 3 xy Điều kiện bền 3 xy [ ] • Ứng suất phẳng đặc biệt tdIV x2 3 xy2 x x Điều kiện bền x2 3 xy2 [ ] Giảng viên Nguyễn Duy Khương 17
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Ví dụ: Cho phân tố chịu trạng thái ứng suất như hình vẽ. a) Tìm ứng suất tương đương theo giả thuyết bền III. b) Tìm ứng suất tương đương theo giả thuyết bền IV. CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Tìm ứng suất tiếp lớn nhất Theo công thức tính ứng suất tiếp lớn nhất ta được y 2 max x xy 2 2 (30) 2 (40) 2 max 50 MPa Ứng suất tương đương theo giả thuyết bền III Công thức tính ứng suất tương đương trong trạng thái ứng suất phẳng tdIII 2 max 2 50 100 MPa Giảng viên Nguyễn Duy Khương 18
- Khoa Khoa Học Ứng Dụng 10/4/2011 Bài giảng Cơ Học Ứng Dụng - Tuần 6 CHƯƠNG 4 Ứng suất và biến dạng 4. Các thuyết bền Tìm ứng suất chính Theo công thức tính ứng suất chính ta được x y y 2 1,2 x xy 2 2 2 20 (30) (40) 2 2 1 70 MPa và 2 30 MPa Ứng suất tương đương theo giả thuyết bền IV Công thức tính ứng suất tương đương trong trạng thái ứng suất phẳng tdIV 12 22 1 2 702 30 70 30 88,88 MPa 2 Giảng viên Nguyễn Duy Khương 19
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Cơ học ứng dụng: Chương II - ThS. Nguyễn Thanh Nhã
25 p | 507 | 125
-
Bài giảng Cơ học ứng dụng: Chương III - ThS. Nguyễn Thanh Nhã
19 p | 462 | 107
-
Bài giảng Cơ học ứng dụng - Bài tập tập chương II - ThS. Nguyễn Thanh Nhã
10 p | 306 | 83
-
Bài giảng Cơ học ứng dụng: Chương VI - ThS. Nguyễn Thanh Nhã
36 p | 258 | 66
-
Bài giảng Cơ học ứng dụng: Chương IV - ThS. Nguyễn Thanh Nhã
10 p | 232 | 63
-
Bài giảng Cơ học ứng dụng: Chương VII - ThS. Nguyễn Thanh Nhã
28 p | 217 | 54
-
Bài giảng Cơ học ứng dụng: Chương VIII - ThS. Nguyễn Thanh Nhã
18 p | 194 | 47
-
Bài giảng Cơ học ứng dụng: Chương 3 - ThS. Nguyễn Thanh Nhã
19 p | 4 | 3
-
Bài giảng Cơ học ứng dụng: Tuần 4 - Nguyễn Duy Khương
19 p | 17 | 2
-
Bài giảng Cơ học ứng dụng: Tuần 2 - Nguyễn Duy Khương
17 p | 23 | 2
-
Bài giảng Cơ học ứng dụng: Tuần 1 - Nguyễn Duy Khương
26 p | 32 | 1
-
Bài giảng Cơ học ứng dụng: Tuần 3 - Nguyễn Duy Khương
4 p | 19 | 1
-
Bài giảng Cơ học ứng dụng: Tuần 5 - Nguyễn Duy Khương
16 p | 29 | 1
-
Bài giảng Cơ học ứng dụng: Tuần 8 - Nguyễn Duy Khương
18 p | 27 | 1
-
Bài giảng Cơ học ứng dụng: Tuần 9 - Nguyễn Duy Khương
12 p | 26 | 1
-
Bài giảng Cơ học ứng dụng: Tuần 10 - Nguyễn Duy Khương
9 p | 26 | 1
-
Bài giảng Cơ học ứng dụng: Tuần 12 - Nguyễn Duy Khương
13 p | 30 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn