Bài giảng Kỹ thuật phản ứng sinh học: Chương 5 - Bùi Hồng Quân
lượt xem 3
download
Bài giảng Kỹ thuật phản ứng sinh học: Chương 5 Quá trình truyền khối khí lỏng, cung cấp cho người học những kiến thức như: Khái niệm cơ bản; Tính toán quá trình truyền khối khí lỏng. Mời các bạn cùng tham khảo!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Kỹ thuật phản ứng sinh học: Chương 5 - Bùi Hồng Quân
- http://buihongquan.com Chương 5. Quá trình truyền khối khí lỏng 5.1. Khá i niệ m cơ bả n 5.2. Tính toá n quá trình truyề n khó i khí lỏ ng 12/23/2018 Bioreaction engineering. 198
- http://buihongquan.com BIOREACTORS 12/23/2018 Bioreaction engineering. 199
- http://buihongquan.com Contents 1. Introduction 2. O2 uptake and Stoichiometry 3. Surface aeration 4. Methods of aeration 5. Mechanically stirred bioreactors 6. Bubble driven bioreactors 7. Airlift bioreactors 8. Packed bed and trickle flow bioreactors 9. Fluidized bed bioreactors 12/23/2018 Bioreaction engineering. 200
- http://buihongquan.com Bioreactors- Introduction Importance of considering process engineering factors when culturing cells. Biological factors include the characteristics of the cells, their maximum specific growth rate, yield coefficient, pH range and temperature range. The productivity of a fermentation is determined by the mode of operation of the fermentation process; eg. the advantages of fed-batch and continuous fermentations over batch fermentations. 12/23/2018 Bioreaction engineering. 201
- http://buihongquan.com Bioreactors-- Introduction Bioreactors The oxygen demand of an industrial process is generally satisfied by aeration and agitation Productivity is limited by oxygen availability and therefore it is important to the factors that affect a fermenters efficiency in supplying O2 O2 requirement, quantification of O2 transfer and factors influencing the transfer of O2 into solution 12/23/2018 Bioreaction engineering. 202
- http://buihongquan.com Bioreactors- Introduction Mass transfer, in particular, oxygen transfer are important factor which determined how a reactor must be designed and operated. Cost was also described as an important consideration. The larger the reactor or the faster the stirrer speed, the greater the costs involved. 12/23/2018 Bioreaction engineering. 203
- http://buihongquan.com MASS TRANSFER and PHASES The rate of oxygen transfer = driving force / resistance. E.g resistance to mass transfer from medium to mo`s are complex and may arise from; Diffusion from bulk gas to gas/liquid interface Solution of gas in liquid interface Diffusion of dissolved gas to bulk of liquid Transport of dissolved gas to regions of cell Diffusion through stagnant region of liquid surrounding the cell Diffusion into cell Consumption by organism (depends on growth/respiration kinetics) 12/23/2018 Bioreaction engineering. 204
- http://buihongquan.com The following diagram serves to illustrate the different phases and material that are relevant in general transport processes associated with fermentation technology; M AS S TR AN S FE R Solid and D is p e rs e d g a s e s Dis s olv ed n u tr i e n ts Im m i s c i b l e liquid n u tr i e n ts P r o d u c ts i n w a te r Ce l l s Fl o c 12/23/2018 Bioreaction engineering. 205
- http://buihongquan.com Phases present in bioreaction / bioreactor Non aqueous phase Aqueous phase Solid phase (Reactants / products) Dissolved reactants / Reaction products Gas (O2, CO2, CH4 etc) Cells Liquids (e.g oils) Sugars Organelles Solid (e.g particles of Minerals Enzymes substrate) Enzymes ......... 1 2 .......... 1 = reactant supply and utilisation 2 = product removal and formation 12/23/2018 Bioreaction engineering. 206
- http://buihongquan.com Mass Transfer • One of the most critical factors in the operation of a fermenter is the provision of adequate gas exchange. •The majority of fermentation processes are aerobic • Oxygen is the most important gaseous substrate for microbial metabolism, and carbon dioxide is the most important gaseous metabolic product. • For oxygen to be transferred from a air bubble to an individual microbe, several independent partial resistance’s must be overcome 12/23/2018 Bioreaction engineering. 207
- http://buihongquan.com Stoichiometry of respiration To consider the Stoichiometry of respiration the oxidation of glucose may be represented as; C6H12O6 + 6O2 = 6H2O + 6CO2 Atomic weight of Carbon 12 Hydrogen 1 Oxygen 16 Molecular weight of glucose is 180 How many grams of oxygen are required to oxidise 180g of glucose? Answer 192g 12/23/2018 Bioreaction engineering. 208
- http://buihongquan.com Solubility of Oxygen Both components oxygen and glucose must be in solution before they become available to microorganisms Oxygen is 6000 times less soluble in water than glucose A saturated oxygen solution contains only10mg dm-3 of oxygen Impossible to add enough oxygen to a microbial culture to satisfy needs for complete respiration Oxygen must be added during growth at a sufficient rate to satisfy requirements 12/23/2018 Bioreaction engineering. 209
- http://buihongquan.com Comparison of conc. driving forces and uptake rates for glucose and oxygen by yeast Problems encountered in oxygen transport can be illustrated by comparing transport of glucose vs oxygen; 1% Sugar (glucose) Broth O2 sat @ 25oC Conc. in bulk broth 10,000 ppm approx. 7 ppm Critical conc . 100 ppm 0.8 ppm (growth stops) Rate of demand 2.8 mmoles/ g cells /h 7.7 mmoles/ g cells /h 12/23/2018 Bioreaction engineering. 210
- http://buihongquan.com MASS TRANSFER and RESPIRATION (a) Mass balance Stoichiometry of respiration e.g glucose; C6H12O6 + 6O2 6H2O + 6 CO2 Oxidation of 180 gms Glucose requires 192 gms O2 Compare with a hydrocarbon (i.e 6 CH2) 12/23/2018 Bioreaction engineering. 211
- http://buihongquan.com The Oxygen requirements of industrial fermentations Oxygen demand dependant on conversion of Carbon (C) to biomass Stoichiometry of conversion of oxygen, carbon and nitrogen into biomass has been elucidated Use these relationships to predict the oxygen demand for a fermentation Darlington (1964) expressed composition of 100g of dry yeast C 3.92 H 6.5 O 1.94 12/23/2018 Bioreaction engineering. 212
- http://buihongquan.com O2 Requirements 6.67CH2O + 2.1O2 = C 3.92 H 6.5 O 1.94 + 2.75CO2 + 3.42H2O 7.14CH2 + 6.135O2 = C 3.92 H 6.5 O 1.94 + 3.22CO2 + 3.89H2O where CH2 = hydrocarbon CH2O = carbohydrate From the above equations to produce 100g of yeast from hydrocarbon requires three times the amount of oxygen than from carbohydrate 12/23/2018 Bioreaction engineering. 213
- http://buihongquan.com Compare solubility of Oxygen vs Glucose ( e.g. oxygen = 9.0 mg/l @ 20oC, 11.3 mg/l @ 10oC) Thus must consider; Requirement for oxygen important in biotechnological processes Quantification of oxygen transfer (to avoid rate limiting step) important Factors influencing rate of transfer (e.g. viscosity) important 12/23/2018 Bioreaction engineering. 214
- http://buihongquan.com FACTORS AFFECTING OXYGEN DEMAND Rate of cell respiration Type of respiration (aerobic vs anaerobic) Type of substrate (glucose vs methane) Type of environment (e.g pH, temp etc.) Surface area/ volume ratio large vs small cells (bacteria v mammalian cells) hyphae, clumps, flocks, pellets etc. Nature of surface area (type of capsule etc) 12/23/2018 Bioreaction engineering. 215
- http://buihongquan.com Methods of Aeration A bioreactor is a reactor system used for the culture of microorganisms. They vary in size and complexity from a 10 ml volume in a test tube to computer controlled fermenters with liquid volumes greater than 100 m3. They similarly vary in cost from dollars to a few million dollars. In the following sections we will compare the following reactors Standing cultures Shake flasks Stirred tank reactors Bubble column and airlift reactors Fluidized bed reactors 12/23/2018 Bioreaction engineering. 216
- http://buihongquan.com Standing cultures In standing cultures, little or no power is used for aeration. Aeration is dependent on the transfer of oxygen through the still surface of the culture. 12/23/2018 Bioreaction engineering. 217
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Kỹ thuật phản ứng - Chương 1: Khái niệm mở đầu
39 p | 344 | 45
-
Bài giảng Kỹ thuật phản ứng - Chương 2: Xử lý dữ kiện động học
33 p | 308 | 45
-
Bài giảng Kỹ thuật xử lý nước thải: Chương 6 - GV. Trần Thị Ngọc Diệu
0 p | 174 | 34
-
Bài giảng Kỹ thuật phân tách tế bào động vật
50 p | 129 | 15
-
Bài giảng Kỹ thuật thu thập thông tin định tính- PGS.TS. Hoàng Thị Phương Thảo
36 p | 100 | 14
-
Bài giảng Kỹ thuật bản đồ địa chính: Chương 1 - ThS. Phạm Thế Hùng
13 p | 150 | 9
-
Bài giảng Kỹ thuật thu nhận hợp chất có hoạt tính sinh học từ thực vật: Chương 3 - Flavonoid
74 p | 20 | 7
-
Bài giảng Phương pháp phân tích hiện đại - Chương 14: Phổ khối lượng
65 p | 42 | 6
-
Bài giảng Phương pháp phân tích hiện đại - Chương 10: Phổ UV-VIS (Phổ kích thích Electron)
54 p | 57 | 5
-
Bài giảng Phương pháp phân tích hiện đại - Chương 19: Đại cương về phương pháp phân tích sắc ký
71 p | 78 | 5
-
Bài giảng Kỹ thuật thu nhận hợp chất có hoạt tính sinh học từ thực vật: Chương 4 - Alkaloid
52 p | 20 | 5
-
Bài giảng Kỹ thuật các quá trình Sinh học - TS. Phạm Minh Tuấn
43 p | 23 | 5
-
Bài giảng Kỹ thuật xử lý chất thải rắn: Chương 5 - Dương Thị Thành
54 p | 11 | 4
-
Bài giảng Kỹ thuật phản ứng - ThS. Hồ Văn Sơn
273 p | 23 | 4
-
Bài giảng Sinh học phân tử: Phương pháp phân tích ADN
48 p | 37 | 4
-
Bài giảng Hoá học trong kỹ thuật và khoa học môi trường: Chương 1.2 - TS. Võ Nguyễn Xuân Quế
20 p | 6 | 3
-
Bài giảng Kỹ thuật bảo quản tế bào
46 p | 87 | 3
-
Bài giảng Phương pháp phân tích hiện đại - Chương 20: Một số phương pháp phân tích sắc ký (Phần 2)
58 p | 34 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn