YOMEDIA
Bài giảng Toán tài chính - Chương 2: Đạo hàm và ứng dụng
Chia sẻ: Minh Vũ
| Ngày:
| Loại File: PDF
| Số trang:95
61
lượt xem
5
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Bài giảng "Toán tài chính - Chương 2: Đạo hàm và ứng dụng" cung cấp cho người học các kiến thức: Hệ số góc của đường cong và đạo hàm, ứng dụng của đạo hàm, hàm cận biên, hàm bình quân, tối ưu hàm một biến, các điểm cực trị,... Mời các bạn cùng tham khảo.
AMBIENT/
Chủ đề:
Nội dung Text: Bài giảng Toán tài chính - Chương 2: Đạo hàm và ứng dụng
- ĐẠO HÀM VÀ CHƯƠNG
ỨNG DỤNG 2
- CHƯƠNG 2: ĐẠO HÀM VÀ ỨNG DỤNG
2.1 Hệ số góc của đường cong và đạo hàm
2.2 Ứng dụng của đạo hàm, hàm cận biên, hàm bình quân
2.3 Tối ưu hàm một biến, các điểm cực trị
2.4 Ứng dụng kinh tế
2.5 Độ cong và ứng dụng
2.6 Hệ số co dãn
- HỆ SỐ GÓC ĐƯỜNG THẲNG
Phương trình tổng quát: Ax By C
Dạng đặc biệt: y ax b
Với a, b là???
Gọi a là hệ số góc của đường thẳng D
y y2 y1
a tan
x x2 x1
- NHẬN XÉT
• Ý nghĩa của hệ số góc: khi x thay đổi một đơn vị thì y
thay đổi a đơn vị.
• Đường thẳng D như thế nào nếu:
• a>0
• a
- HỆ SỐ GÓC CỦA ĐƯỜNG CONG
Tiếp tuyến và cát tuyến của đường tròn
Nếu điểm Q trong hình trên di chuyển càng gần điểm P
thì góc tạo bởi đường thẳng PQ và tiếp tuyến tại điểm P
càng nhỏ.
- HỆ SỐ GÓC ĐƯỜNG CONG
Hệ số góc cát tuyến
y2 y1 f a h f a
k
x2 x1 aha
f a h f a
k
h
- VÍ DỤ 1
Cho hàm số y=x2
a) Tìm hệ số góc của cát tuyến với a=1 và h=2 và 1. Vẽ đồ
thị f(x) và hai cát tuyến trên.
b) Tìm và biểu diễn hệ số góc của cát tuyến với a=1 và h
khác 0 bất kỳ.
c) Tìm giới hạn của biểu thức trong câu b và giải thích ý
nghĩa.
- HỆ SỐ GÓC ĐƯỜNG CONG
Đồ thị hàm số và 2 cát tuyến Đồ thị hàm số và tiếp tuyến tại x=1
- HỆ SỐ GÓC CỦA ĐƯỜNG CONG
Định nghĩa. Cho hàm số y=f(x), hệ số góc của đồ thị hàm
số tại điểm (a, f(a)) được xác định bởi:
f a h f a
lim
h 0 h
(nếu giới hạn này tồn tại)
Khi đó, đường tiếp tuyến của đồ thị hàm số chỉnh là
đường thẳng đi qua điểm (a, f(a)) với hệ số góc cho bởi
công thức trên.
- ĐẠO HÀM TẠI MỘT ĐIỂM
Định nghĩa: Cho hàm số y=f(x), đạo hàm của hàm số
tại x định nghĩa như sau:
f (x + h )- f (x )
f ' (x ) = lim
h® 0 h
(nếu giới hạn này tồn tại hữu hạn).
Nếu hàm số có đạo hàm tại mọi điểm thuộc (a,b) thì
ta nói hàm số khả vi trên (a,b)
Nếu giới hạn không tồn tại thì hàm số không có đạo
hàm hay không khả vi.
- VÍ DỤ 2
Tìm đạo hàm của hàm: f (x ) = x - 8 x + 9
2
tại x=2 theo định nghĩa.
Ta xét giới hạn sau: f (2 + h )- f (2 )
lim
h® 0 h
2
lim
(2 + h ) - 8 (2 + h )+ 9 + 3
= lim
h 2 - 4h
= - 4
h® 0 h h® 0 h
Vậy: f ' (2 ) = - 4
- VÍ DỤ 3.
Tổng doanh thu của một công ty (đơn vị triệu $) trong t
tháng được cho bởi công thức sau:
S t t 2
a) Cho biết ý nghĩa của S(25) và S’(25)
b) Sử dụng kết quả câu a để ước lượng tổng doanh thu
sau 26 tháng; sau 27 tháng.
- VÍ DỤ 4.
Một hãng sản xuất vải với chiều rộng mỗi cây vải là cố
định. Chi phí sản xuất x (mét) vải là:
C f x $
A) Cho biết ý nghĩa và đơn vị của f’(x)
B) Trong thực tế, khi nói f’(1000)=9 ta biết điều gì?
- VÍ DỤ 5.
Gọi D(t) là nợ quốc gia của Mỹ tại thời điểm t. Bảng dưới
đây cho ta con số xấp xỉ giá trị của hàm này vào cuối mỗi
năm theo đơn vị triệu $ kể từ năm 1980 đến năm 2000.
Giải thích và ước lượng giá trị của D’(1990)
T 1980 1985 1990 1995 2000
D(t) 930,2 1945,9 3233,3 4974,0 5674,2
- ĐẠO HÀM PHẢI – TRÁI
Đạo hàm trái của f(x) tại a là:
f (x )- f (a ) f (a + h )- f (a )
( )=
f ' a -
lim-
x® a x- a
= lim-
h® 0 h
Đạo hàm phải của f(x) tại a là:
f (x )- f (a ) f (a + h )- f (a )
( )=
f ' a +
lim+
x® a x- a
= lim+
h® 0 h
- ĐỊNH LÝ
Định lý: Hàm số f(x) có đạo hàm tại điểm a khi và chỉ
khi nó có đạo hàm trái; đạo hàm phải tại a và hai đạo
hàm này bằng nhau.
( )=
f ' (a ) = L Û f ' a -
( )=
f ' a +
L
Định lý: Nếu hàm số f(x) có đạo hàm tại a thì hàm số
liên tục tại a. Chiều ngược lại có thể không đúng.
f ' (a ) = L Û lim f (x ) = f (a )
x® a
- VÍ DỤ 6
Cho hàm số:
ìï e 1/ x
f (x ) = ïí
,x ¹ 0 Tìm ( ) ( )
f ' 0- ; f ' 0+
ïï 0 ,x = 0
ïî
Ta có:
f (0 + h )- f (0 ) e 1/ h - 0 - u
( )
f ' 0 -
= lim-
h® 0 h
= lim-
h® 0 h
= lim
u ® + ¥ e u
= 0
f (0 + h )- f (0 ) e 1/ h - 0
( )
f ' 0+ = lim+
h® 0 h
= lim+
h® 0 h
= +¥
Vậy không tồn tại đạo hàm của hàm số tại 0.
- HÀM SỐ ĐẠO HÀM
Với a cố định ta có:
f (a + h )- f (a )
f ' (a ) = lim
h® 0 h
Thay a bằng x ta có:
f (x + h )- f (x )
f ' (x ) = lim
h® 0 h
Với mỗi giá trị khác nhau của x ta tính được f’(x) nếu giới
hạn tồn tại hữu hạn. Như vậy giá trị của f’(x) phụ thuộc
vào biến độc lập x nên có thể xem f’ là một hàm theo x và
gọi là đạo hàm của hàm f.
- HÀM SỐ ĐẠO HÀM
Hàm số đạo hàm của hàm y=f(x).
Ký hiệu:
df dy d
f '; y '; ; ; f (x )
dx dx dx
Tập xác định của hàm f’ là tập các giá trị của x sao cho f’(x)
tồn tại. Nó có thể nhỏ hơn TXĐ của hàm số f(x).
- VÍ DỤ 7
Tìm hàm số đạo hàm của hàm y=x2.
Ta có:
2
f (x + h )- f (x ) (x + h ) - x 2
lim = lim = 2x
h® 0 h h® 0 h
Giới hạn này tồn tại hữu hạn với mọi x thuộc TXĐ.
Vậy đạo hàm của hàm số:
y ' = 2x
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
ERROR:connection to 10.20.1.98:9315 failed (errno=111, msg=Connection refused)
ERROR:connection to 10.20.1.98:9315 failed (errno=111, msg=Connection refused)
Đang xử lý...