intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Báo cáo khoa học: "Lý thuyết xác suất áp dụng trong phân tích rủi ro dự án"

Chia sẻ: Nguyễn Phương Hà Linh Linh | Ngày: | Loại File: PDF | Số trang:6

100
lượt xem
20
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tóm tắt: Lý thuyết xác suất là một công cụ cơ bản và quan trọng cho việc phân tích rủi ro. Hầu hết các ph-ơng pháp phân tích rủi ro đều liên quan và đ-ợc xây dựng trên cơ sở lý thuyết xác suất. Bài báo này trình bầy cơ sở lý luận chung về lý thuyết xác suất và ứng dụng của lý thuyết xác suất vào phân tích rủi ro dự án.

Chủ đề:
Lưu

Nội dung Text: Báo cáo khoa học: "Lý thuyết xác suất áp dụng trong phân tích rủi ro dự án"

  1. Lý thuyÕt x¸c suÊt ¸p dông trong ph©n tÝch rñi ro dù ¸n NCS. TRÞnh thuú anh Bé m«n Qu¶n trÞ kinh doanh - §H GTVT Tãm t¾t: Lý thuyÕt x¸c suÊt lμ mét c«ng cô c¬ b¶n vμ quan träng cho viÖc ph©n tÝch rñi ro. HÇu hÕt c¸c ph−¬ng ph¸p ph©n tÝch rñi ro ®Òu liªn quan vμ ®−îc x©y dùng trªn c¬ së lý thuyÕt x¸c suÊt. Bμi b¸o nμy tr×nh bÇy c¬ së lý luËn chung vÒ lý thuyÕt x¸c suÊt vμ øng dông cña lý thuyÕt x¸c suÊt vμo ph©n tÝch rñi ro dù ¸n. Summary: Statistic theory is a basic and useful tool to study project risk analysis. Most of risk analysis methods are constructed based on the theory. This paper aims to present statistic theory and the methodology to apply it to project risk analysis. i. C¸c kh¸i niÖm vÒ x¸c suÊt X¸c suÊt chØ kh¸i niÖm kh¶ n¨ng xuÊt hiÖn cña mét sù kiÖn ngÉu nhiªn, x¸c suÊt cña c¸c sù kiÖn cã thÓ xuÊt hiÖn tõ c¸c nguån kh¸c nhau (xem b¶ng 1). B¶ng 1. X¸c suÊt sù kiÖn Lo¹i x¸c suÊt C¸ch x¸c ®Þnh Ph¹m vi øng dông CT 2 X¸c suÊt X¸c ®Þnh trªn c¬ së quan s¸t c¸c sù kiÖn ChØ ¸p dông víi c¸c sù kiÖn “kh¸ch quan” cïng lo¹i x¶y ra trong qu¸ khø mang tÝnh chÊt lÆp ®i lÆp l¹i X¸c suÊt “lý X¸c ®Þnh tõ viÖc quan s¸t c¸c sù kiÖn x¶y Tung ®ång xu sÊp ngöa lý t−ëng t−ëng” ra trong ®iÒu kiÖn lý t−ëng. Rót bµi, xóc x¾c lý t−ëng. X¸c ®Þnh trªn c¬ së tham kh¶o ý kiÕn vµ Cã thÓ ¸p dông víi bÊt cø sù ®¸nh gi¸ cña c¸c chuyªn gia vÒ kh¶ n¨ng kiÖn lo¹i nµo. xuÊt hiÖn mét sù kiÖn. X¸c suÊt “chñ Mang tÝnh chÊt chñ quan cña ng−êi ®¸nh quan” gi¸ (tuú thuéc vµo tr×nh ®é chuyªn gia vµ møc tin t−ëng cña hä vÒ kh¶ n¨ng x¶y ra sù kiÖn) 1.1. X¸c suÊt kh¸ch quan §Çu tiªn, ta nghiªn cøu x¸c suÊt “kh¸ch quan”, ®−îc tÝnh to¸n trªn c¬ së quan s¸t tÇn suÊt xuÊt hiÖn cña c¸c sù kiÖn cïng lo¹i trong qu¸ khø. VÝ dô: Sè ngµy xuÊt hiÖn cã m−a trªn 50 mm ë Hµ Néi vµo th¸ng 8 n¨m nay, hoÆc x¸c suÊt trong th¸ng 7 cã 1, 2, hoÆc 5 ngµy cã nhiÖt ®é cao trªn 380C. Lo¹i x¸c suÊt nµy chØ ®−îc ¸p dông ®èi víi c¸c sù kiÖn ®−îc x¸c ®Þnh lµ cã tÝnh chÊt lÆp ®i lÆp l¹i. Mét vÝ dô phæ biÕn ®−îc sö dông trong lý thuyÕt x¸c suÊt, ®ã lµ vÝ dô vÒ viÖc tung nhiÒu lÇn mét ®ång xu cã hai mÆt sÊp vµ ngöa. VÝ dô nµy ®−îc xem lµ mÉu mùc cña sù kh¸ch quan vµ khoa häc. Khi gieo mét ®ång xu lý t−ëng (®Òu ®Æn, ®ång chÊt, c©n ®èi) th× x¸c suÊt xuÊt hiÖn mÆt xÊp b»ng mÆt ngöa (b»ng 1/2). T−¬ng tù mét con xóc x¾c lý t−ëng (®Òu ®Æn, ®ång chÊt, ®èi
  2. xøng) x¸c suÊt xuÊt hiÖn mçi mÆt ®Òu b»ng nhau vµ b»ng1/6. Nh− vËy, x¸c suÊt lo¹i nµy cho thÊy nh÷ng con sè râ rµng, chuÈn x¸c ®−îc quan s¸t b»ng trùc gi¸c. Tuy vËy, khi hai ng−êi cïng tung mét ®ång xu 100 lÇn, ng−êi thø nhÊt ®−îc 535/100 mÆt sÊp trong khi ng−êi thø 2 cã thÓ ®−îc 456/100 mÆt sÊp. Sè mÉu lÊy ph¶i rÊt lín (v« h¹n) th× míi cã kh¶ n¨ng 50% x¶y ra mÆt sÊp vµ 50% x¶y ra mÆt ngöa. Khi chóng ta chØ tung ®ång xu cã mét lÇn th× kh«ng thÓ nãi ch¾c ®iÒu g× sÏ x¶y ra. ChÝnh v× vËy x¸c suÊt “kh¸ch quan” phï hîp víi phÇn lín c¸c sù kiÖn vµ hiÖn t−îng thùc tÕ trong cuéc sèng. 1.2. X¸c suÊt lý t−ëng Thø hai, ta nghiªn cøu x¸c suÊt “lý t−ëng” x¸c ®Þnh tõ viÖc quan s¸t sù kiÖn x¶y ra trong ®iÒu kiÖn lý t−ëng. ViÖc tung ®ång xu nhiÒu lÇn lµ mét ph−¬ng ph¸p kh¸ch quan, chø b¶n th©n kÕt qu¶ cña viÖc lµm Êy kh«ng ph¶i lµ kh¸ch quan. X¸c suÊt lý t−ëng chØ cã ®−îc khi thùc hiÖn phÐp thö v« h¹n lÇn. 1.3. X¸c suÊt chñ quan Lo¹i thø ba ®−îc gäi lµ x¸c suÊt “chñ quan" v× nã tuú thuéc vµo tr×nh ®é cña c¸c chuyªn gia. Mäi ng−êi th−êng ®−a ra nh÷ng kÕt luËn cña m×nh vÒ c¸c sù kiÖn hoÆc t×nh huèng. C¸c quan ®iÓm vµ sù lùa chän nµy ph¶n ¸nh tr×nh ®é ®¸nh gi¸ vµ sù tin t−ëng cña hä vÒ kh¶ n¨ng xuÊt hiÖn sù kiÖn. Khi kh«ng cã c¬ së “lý t−ëng” ®Ó ®¸nh gi¸ quan ®iÓm chñ quan nµy, viÖc th¶o luËn vÒ sù kiÖn x¶y ra mét lÇn duy nhÊt ®−îc xem nh− ®èi víi mét sù kiÖn lÆp ®i lÆp l¹i lµ mét viÖc lµm cã ý nghÜa. V× thÕ ph−¬ng ph¸p x¸c suÊt “chñ quan” lµ mét c¸ch lµm duy nhÊt gi¶i quyÕt c¸c vÊn ®Ò, hiÖn t−îng, sù kiÖn x¶y ra trong cuéc sèng thùc tÕ, c¸c sù kiÖn nµy cã thÓ lÆp ®i lÆp l¹i vµ còng cã thÓ lµ duy nhÊt. VÝ dô nh− kh¶ n¨ng l·i suÊt ng©n hµng gi¶m xuèng trong n¨m tr−íc? Kh¶ n¨ng l¹m ph¸t gi÷ ë møc 5% trong n¨m tíi ?... CT 2 Cã rÊt nhiÒu tranh c·i vÒ vÊn ®Ò x¸c suÊt thèng kª xung quanh sù nghi ngê x¸c suÊt “chñ quan”. §èi víi c¸c t×nh huèng thùc tÕ, kh¶ n¨ng c¸c sù kiÖn t−¬ng tù x¶y ra nhiÒu lÇn lµ rÊt hiÕm. MÆt kh¸c, kh¶ n¨ng thu thËp, tËp hîp nhiÒu sè liÖu vÒ tÇn suÊt xuÊt hiÖn cña c¸c sù kiÖn lµ kh¸ khã kh¨n. V× thÕ, x¸c suÊt “chñ quan” lµ ph−¬ng ph¸p h÷u hiÖu vµ thÝch hîp nhÊt ®−îc sö dông ®Ó gi¶i quyÕt phÇn lín c¸c t×nh huèng x¶y ra trong thùc tÕ, ®Æc biÖt trong lÜnh vùc qu¶n lý dù ¸n x©y dùng. Do tÝnh ®a d¹ng vµ ®éc nhÊt cña dù ¸n, nªn mçi dù ¸n cã nh÷ng lo¹i rñi ro kh¸c nhau, ta kh«ng thÓ cã ®−îc th«ng tin vµ c¸c sù kiÖn t−¬ng tù x¶y ra ®Ó lµm c¬ së sè liÖu. V× vËy cã thÓ nãi x¸c suÊt kh¸ch quan kh«ng thÓ ¸p dông ®èi víi viÖc ph©n tÝch rñi ro dù ¸n. ChØ cã thÓ xem c¸c kinh nghiÖm vµ bµi häc trong qu¸ khø hoÆc tõ c¸c dù ¸n t−¬ng tù lµm c¬ së cho viÖc x¸c ®Þnh x¸c suÊt chñ quan. X¸c suÊt chñ quan còng hÕt søc quan träng v× lý do thø hai. Víi cïng mét l−îng th«ng tin vµ kinh nghiÖm nh− nhau, c¸c chuyªn gia cã thÓ ®−a ra x¸c suÊt chñ quan rÊt kh¸c nhau. ChÝnh sù kh¸c biÖt nµy ®ãng vai trß quan trong trong qu¸ tr×nh ra quyÕt ®Þnh, bëi nã lµ c¬ së ®Ó cã thÓ ®iÒu chØnh x¸c ®Þnh gi¸ trÞ x¸c suÊt chñ quan mét c¸ch hîp lý. X¸c suÊt chñ quan ®−îc x¸c ®Þnh ë giai ®o¹n ®Çu tiªn trong qu¸ tr×nh ph©n tÝch. TÊt nhiªn cã mét sè vÊn ®Ò, x¸c suÊt chñ quan lµ th−íc ®o sù tù tin cña mçi c¸ nh©n. NghÜa lµ chóng ta cã thÓ hái x¸c suÊt theo ý kiÕn chñ quan cña nhµ qu¶n lý, nhµ ®Çu t− hoÆc nhµ thÇu, chóng ta cã thÓ m¹o hiÓm khi ®−a ra ®¸nh gi¸ sím vÒ ®Çu ra. X¸c suÊt chñ quan cã thÓ xem nh− mét ®iÒu ®−îc tiªn ®o¸n tr−íc. C¸ch thøc ®Ó x¸c ®Þnh x¸c suÊt chñ quan lµ tiÕn hµnh hái ý kiÕn c¸c chuyªn gia vÒ kh¶
  3. n¨ng xuÊt hiÖn mét sù kiÖn nµo ®ã, vµ t×m c¸ch g¾n mét gi¸ trÞ x¸c suÊt cô thÓ cho nã. Nh×n chung mäi ng−êi cã xu h−íng dù ®o¸n x¸c suÊt kh¸ thÊp. §Æc biÖt, khi mét chuyªn gia muèn c¶nh gi¸c vÒ mét sè sù kiÖn cã kh¶ n¨ng x¶y ra, anh ta th−êng dù b¸o x¸c suÊt rÊt sai lÖch, thËm chÝ cßn tÖ h¬n lµ tr−êng hîp kh«ng dù b¸o g×. V× thÕ, trong thùc tÕ, tèt nhÊt nªn ®Æt c©u hái nhiÒu lÇn theo c¸c c¸ch kh¸c nhau ®Ó xem xÐt sù kh¸c biÖt trong nh÷ng c©u tr¶ lêi. NÕu ta t×m thÊy cã sù kh¸c biÖt, ®ã lµ tÝn hiÖu ®¸ng mõng. Nã sÏ gióp cho chóng ta kh¸ nhiÒu trong viÖc nghiªn cøu vÊn ®Ò mét c¸ch c¬ b¶n vµ chi tiÕt. Thùc tÕ cho thÊy c¸c chuyªn gia cã xu h−íng qu¸ tù tin vÒ kh¶ n¨ng ®¸nh gi¸ cña hä. VÝ dô trong nhiÒu nghiªn cøu ®· thùc hiÖn, mäi ng−êi ®−îc hái ph¶i tr¶ lêi c¸c c©u hái xem hä tin t−ëng bao nhiªu % vµo quyÕt ®Þnh cña m×nh? Tõ ®ã cã thÓ thÊy ®−îc sù liªn hÖ gi÷a sù tù tin cña mçi ng−êi ®−îc hái vµ møc ®é ®óng ®¾n trong c©u tr¶ lêi cña hä. VÝ dô khi mét ng−êi tin r»ng 85% c©u tr¶ lêi cña m×nh lµ ®óng, th× c©u tr¶ lêi cña hä cã thÓ ®óng tíi 75%. V× thÕ, khi x¸c ®Þnh x¸c suÊt cho mét sù kiÖn cô thÓ, cÇn xem xÐt c¸c kh¶ n¨ng cã thÓ x¶y ra sai lÇm. Cã hai c¸ch ®Ó lÊy ý kiÕn chuyªn gia, ®ã lµ ph−¬ng ph¸p chuyªn gia tËp thÓ, trong ®ã c¸c chuyªn gia cïng nhau th¶o luËn vÒ mét vÊn ®Ò; vµ ph−¬ng ph¸p Delphi, trong ®ã ng−êi ta lÊy ý kiÕn c¸c chuyªn gia th«ng qua viÖc bá phiÕu kÝn.Th«ng th−êng ng−êi ta thÝch tr−ng cÇu ý kiÕn cña mét nhãm c¸c chuyªn gia h¬n lµ tin t−ëng vµo mét chuyªn gia duy nhÊt dï ®ã lµ mét chuyªn gia giái, bëi v× mçi chuyªn gia ch¾c ch¾n sÏ ®−a ra nh÷ng ý kiÕn kh¸c biÖt nhau mét chót, chÝnh sù kh¸c biÖt nµy gãp phÇn lo¹i trõ nh÷ng ®Þnh kiÕn c¸ nh©n cña c¸c chuyªn gia. Tuy nhiªn, râ rµng cÇn lo¹i bá sù liªn hÖ c¸ nh©n gi÷a c¸c chuyªn gia. V× lý do ®ã ph−¬ng ph¸p Delphi th−êng ®−îc sö dông réng r·i. Ph−¬ng ph¸p nµy dùa trªn sù lµm viÖc cña c¶ nhãm mét c¸ch ®éc lËp nh»m lo¹i bá ®i c¸c ®Þnh kiÕn sai lÖch do sù tù tin qu¸ møc cña c¸c chuyªn gia còng nh− nh÷ng t¸c ®éng mang tÝnh c¸ch c¸ nh©n cña hä. CT 2 ii. C¸c c«ng thøc x¸c ®Þnh x¸c suÊt X¸c suÊt cña mét sù kiÖn lu«n n»m trong kho¶ng [0,1]. X¸c suÊt cña sù kiÖn kh«ng thÓ x¶y ra b»ng 0, x¸c suÊt cña sù kiÖn tÊt yÕu b»ng 1. NÕu A1, A2 … lµ d·y c¸c sù kiÖn xung kh¾c tõng ®«i thuéc A th× P(A) = ∑P(Ak) víi k =1÷n X¸c suÊt cña sù kiÖn A lµ tæng cña hai sù kiÖn B vµ C víi B vµ C lµ hai sù kiÖn xung kh¾c th× kh¶ n¨ng sù kiÖn A xuÊt hiÖn lµ P(A) = P(B) + P(C) VÝ dô: NÕu ta ®Æt c−îc vµo hai con ngùa trong ®ã sè 6 con ngùa chuÈn bÞ ®ua, gi¶ thiÕt kh¶ n¨ng th¾ng cuéc cña mçi con ngùa lµ nh− nhau (®iÒu nµy cã vÎ phi thùc tÕ) tøc lµ kh¶ n¨ng th¾ng cuéc cña mçi con ngùa lµ 1/6. nh− vËy kh¶ n¨ng th¾ng cuéc cña ta lµ 1/6 + 1/6 = 2/3 = 0,333. - X¸c suÊt cã ®iÒu kiÖn Gi¶ sö P(B) ≠ 0. X¸c suÊt cã ®iÒu kiÖn cña A khi ®iÒu kiÖn B x¶y ra ®−îc x¸c ®Þnh: P( AB) P( A) = P(B) Do ®ã P(AB) = P(A/B) . P(A). NÕu A vµ B lµ hai sù kiÖn ®éc lËp th× P(AB) = P(A) . P(B) Ta cã P(A1, A2, …An) = P(A1/A2,…An) . P(A2/A3....An)…P(An-1/An) . P(An). NÕu A1, A2 …An lµ c¸c sù kiÖn ®éc lËp, x¸c suÊt ®Ó A1 x¶y ra, råi A2 x¶y ra ®−îc tÝnh: P(A1…An) = P(A1).P(A2) ... P(An)
  4. VÝ dô: NÕu ta ®Æt c−îc r»ng con ngùa thø nhÊt sÏ th¾ng trong cuéc ®ua thø nhÊt vµ con ngùa thø hai sÏ th¾ng trong cuéc ®ua thø hai th× x¸c suÊt th¾ng cuéc sÏ lµ 1/6×1/6 = 1/36 = 0,027. C«ng thøc x¸c suÊt tÝch luü nµy ®−îc sö dông trong tr−êng hîp tÝnh kh¶ n¨ng xuÊt hiÖn nhiÒu sù kiÖn ®éc lËp ®ång thêi. X¸c suÊt tÝch luü ®−îc sö dông kh¸ réng r·i trong lÜnh vùc x©y dùng. Xem xÐt mét vÝ dô vÒ chi phÝ dù tÝnh x©y dùng mét ®o¹n ®−êng (b¶ng 2), chi phÝ x©y dùng ®o¹n ®−êng nµy ®−îc chia ra lµm 2 gãi thÇu nhá. Ng−êi ta tÝnh chi phÝ cho mçi gãi thÇu trong tr−êng hîp b×nh th−êng (kh¶ n¨ng x¶y ra cao nhÊt) vµ trong tr−êng hîp xÊu nhÊt. Quy t¾c x¸c ®Þnh tr−êng hîp xÊu nhÊt tøc lµ kh¶ n¨ng xuÊt hiÖn
  5. khai th¸c d©y chuyÒn s¶n xuÊt bª t«ng trén lµ: EV = 0,3×7.000 + 0,5×4.000 + 0,2×1.000 = 4.300 §iÒu nµy cã nghÜa lµ nÕu nh− chi phÝ cè ®Þnh vµ l−u ®éng (chi phÝ ®Çu t− vµ khai th¸c) cña dù ¸n d©y chuyÒn s¶n xuÊt bª t«ng trén nhá h¬n th× thùc hiÖn dù ¸n sÏ cã hiÖu qu¶, ng−îc l¹i nÕu nh− chi phÝ cña dù ¸n lín th× kh«ng bao giê nªn thùc hiÖn dù ¸n. 3.2. §é lÖch chuÈn §é lÖch chuÈn σ (X) cña mét biÕn ngÉu nhiªn ®o l−êng dao ®éng cña biÕn ngÉu nhiªn ®ã xung quanh kú väng to¸n häc cña nã. n ∑ Pi [(X i − E( X )]2 σ( X) = i=1 §é lÖch chuÈn ®−îc sö dông ®Ó ®¸nh gi¸ møc ®é rñi ro v× nã cho biÕt kho¶ng dao ®éng cña l·i suÊt xung quanh gi¸ trÞ trung b×nh. Khi gi¸ trÞ ®é lÖch chuÈn cµng lín th× ®é rñi ro cµng cao. VÝ dô: Víi 10 tû ®ång, mét c«ng ty x©y dùng ®ang xem xÐt hai dù ¸n: (A) ®Çu t− x©y dùng mét tuyÕn ®−êng tèc hµnh thu phÝ; vµ (B) ®Çu t− x©y dùng mét c©y cÇu thu phÝ. Sau khi ph©n tÝch ®¸nh gi¸ hiÖu qu¶, c¸c chuyªn gia nhËn thÊy, ë t×nh tr¹ng b×nh th−êng (®iÒu kiÖn an toµn), c¶ hai dù ¸n ®Òu ®−îc chÊp nhËn víi NPV > 0 vµ IRR > r. Tuy nhiªn c«ng ty muèn c¨n cø vµo møc ®é m¹o hiÓm ®Ó quyÕt ®Þnh ®Çu t−. H·y x¸c ®Þnh møc ®é m¹o hiÓm cña dù ¸n. §Çu tiªn ta ®¸nh gi¸ c¸c møc thu nhËp kh¸c nhau cña dù ¸n. Sau ®ã tÝnh x¸c suÊt ë møc ®é kh¸c nhau cña thu nhËp. X¸c suÊt nµy cã thÓ lµ chñ quan vµ ®−îc chñ ®Çu t− x¸c ®Þnh, còng cã thÓ ®−îc rót ra tõ thèng kª. Gi¶ sö c¸c nhµ ®Çu t− cung cÊp sè liÖu nh− sau: CT 2 Thu nhËp hµng n¨m X¸c suÊt Gi¶ thiÕt xuÊt hiÖn Dù ¸n ®Çu t− x©y dùng ®−êng Dù ¸n ®Çu t− x©y dùng cÇu Gi¶ thiÕt bi quan 500 300 0,2 Gi¶ thiÕt trung b×nh 750 800 0,6 Gi¶ thiÕt l¹c quan 900 950 0,2 TiÕp theo ta tÝnh kú väng to¸n cña c¸c kho¶n thu nhËp : n ∑ X i .Pi XA = = 500 x0,2 + 750.0,6 + 900.0,2 = 730 i=1 n ∑ X i .Pi XB = = 300 x0,2 + 800.0,6 + 950.0,2 = 730 i=1 Trªn c¬ së ®ã tÝnh ®é m¹o hiÓm b»ng ®é lÖch mÉu: { } 1/ 2 ⎧ ⎫ ⎪n ⎪ = (− 230 )2 .0,2 + (20 )2 .0,6 + (170 )2 .0,2 1/ 2 σ A = ⎨∑ ( X i − X) 2 .Pi ⎬ = 128,84 ⎪i=1 ⎪ ⎩ ⎭ { } 1/ 2 ⎧ ⎫ ⎪n ⎪ = (− 430 )2 .0,2 + (70 )2 .0,6 + (220 )2 .0,2 1/ 2 σ B = ⎨∑ ( X i − X) 2 .Pi ⎬ = 222,71 ⎪i=1 ⎪ ⎩ ⎭ Ta thÊy dù ¸n A cã ®é lÖch mÉu nhá h¬n, chøng tá dù ¸n A Ýt m¹o hiÓm h¬n, v× thÕ nã ®−îc chän.
  6. 3.3. HÖ sè biÕn ®éng Trong tr−êng hîp møc ®é m¹o hiÓm σ cña c¶ 2 dù ¸n b»ng nhau, ta ®−a vµo hÖ sè biÕn ®éng ®Ó x¸c ®Þnh dù ¸n cã møc ®é an toµn cao h¬n. HÖ sè biÕn ®éng H = σ / X VÝ dô: Mét c«ng ty ®ang lùa chän 2 dù ¸n A vµ B. Cho c¸c sè liÖu sau, h·y xem dù ¸n nµo nªn ®−îc chän? Dù ¸n Vèn ®Çu t− Thu nhËp X¸c suÊt 800 0,2 A 900 1000 0,6 1200 0,2 1000 0,2 B 1300 1200 0,6 1400 0,2 Gäi H lµ hÖ sè biÕn ®éng, ta cã: H = σ / X. Dù ¸n nµo cã H nhá th× dù ¸n ®ã cã møc ®é m¹o hiÓm Ýt h¬n. Ta cã b¶ng sau: σ2 σ Dù ¸n Pi Xi ( X i − X) 2 Xi − X X 0,2 800 160 -200 40000 8000 0,6 1000 600 0 0 0 A 0,2 1200 240 200 40000 8000 1000 16000 126,5 0,2 1000 200 -200 40000 8000 0,6 1200 720 0 0 0 CT 2 B 0,2 1400 280 200 40000 8000 1200 16000 126,5 V× ®é lÖch mÉu cña 2 dù ¸n nh− nhau σ = 126,5 nªn ta tÝnh hÖ sè biÕn ®éng HA = 126,5 / 1000 = 0,1265 vµ HB = 126,5 / 1000 = 0,1054 Nh− vËy dù ¸n B cã møc ®é an toµn cao h¬n nªn ®· ®−îc chän. Tµi liÖu tham kh¶o [1]. TrÞnh Thuú Anh (2005). "Ph−¬ng ph¸p ph©n tÝch rñi ro dù ¸n", T¹p chÝ Khoa häc Giao th«ng VËn t¶i, sè 12, th¸ng 11 n¨m 2005. [2]. TrÞnh Thuú Anh (2005). "M« pháng Monter Carlo trong viÖc ®Þnh gi¸ c«ng tr×nh x©y dùng", T¹p chÝ CÇu ®−êng ViÖt Nam, sè 05/2005. [3]. TrÞnh Thuú Anh (2004). Ph−¬ng ph¸p x¸c ®Þnh vµ ph©n tÝch rñi ro dù ¸n ®Çu t−, chuyªn ®Ò tiÕn sü sè 3, Tr−êng §¹i häc Giao th«ng VËn t¶i, Hµ Néi. [4]. John Raftery (1994). Risk Analysis in Project Management. E & FN Spon. [5]. PGS. TS. Tè Phi Ph−îng (1998). Gi¸o tr×nh lý thuyÕt thèng kª. §H KTQD. NXB gi¸o dôc. [6]. NguyÔn V¨n Hé (2001). X¸c suÊt thèng kª. NXB Gi¸o dôc
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
6=>0