Báo cáo nghiên cứu khoa học: " Monte Carlo simulations and DSP application for optical parameter measurement"
lượt xem 4
download
Abilitiy tính của Texas Instrument TMS320VC5510 DSK với các ngôn ngữ chương trình khác nhau là điều tra về đo lường thời gian tối thiểu của DSP. Các bước của mô phỏng Monte Carlo nhúng vào flash của DSK thông qua giao diện JTAG của DSK...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Báo cáo nghiên cứu khoa học: " Monte Carlo simulations and DSP application for optical parameter measurement"
- VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 Monte Carlo simulations and DSP application for optical parameter measurement Nguyen Tuan Anh1,*, Bach Gia Duong2, Nguyen Xuan Thai1 1 National Centre for Technological Progress 2 College of Technology, Vietnam National University, Hanoi Received 9 February 2010 Abstract. The Texas Instrument TMS320VC5510 DSK’s calculation abilitiy with different program languages is investigated for minimum the DSP’s measurement time. The steps of Monte Carlo simulations embedded into the DSK’s flash through the DSK’s JTAG interface for optical parameters measurement including absorption coefficient µ a , scattering coefficient µ s and anisotropy g are presented. The obtained results for diluted milk standard samples are also reported. 1. Introduction Light propagation in turbid media can be described by the Radiance Transport Equation with three optical specified parameters: absorption coefficient µa, scattering coefficient µs, and anisotropy g [1]. The determination of these parameters can be taken by different methods: the approximate models such as Kubelka-Munk [2] or Monte Carlo simulations. The Kubelka-Munk model gives quick result as it bases on direct calculation of the backward scattering R d , forward scattering Td and the collimated light Tc [3]. However, it is not as exact as the result given by Monte Carlo simulations. Monte Carlo simulations has developed since 1940s, even though, nowadays its application has been found in many fields due to it is a mathematic method that give exact results [4,5]. Nevertheless, Monte Carlo simulations require a great volume of calculation. In other words, it takes much time for calculation, thus, not suitable with on-line monitoring system. To cope with this, Monte Carlo simulations has been embedded into DSP environment - the Texas Instrument TMS320VC5510 DSK kit [6]. With a DSP’s special structure such as parallel and pipe-line techniques, this method allows reducing the calculation time. 2. Theory Monte Carlo simulations for photon propagation in turbid media containing absorption and scattering particles simulates random movement of photon, based on a set of rules that effect the movement. Fig. 1 illustrates the deflection of a photon caused by a scattering event. ______ * Corresponding author. E-mail: nguyenmha@fpt.vn 61
- 62 N.T. Anh et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 Fig. 1. Deflection of a photon with the deflection angle θ and azimuthal Ψ. According to Monte Carlo simulations, photon moves step by step and the photon propagation is expressed by probability distribution functions of the step, deflection angle, azimuthal angle and the possibility of reflection, transmission at surfaces. Fig. 2 indicates the flowchart of photon movement in a biological sample. Fig. 2. Flowchart for Monte Carlo simulations. Monte Carlo simulations for biological samples begin by photon stepsize and photon weighting. Photon position has been verified after each step. If the photon is internally reflected and still in the sample, it is possibly absorbed and then the absorption and photon’s weight is updated. If the weight is
- 63 N.T. Anh et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 small but the photon is still considered, the next step is verified and the as-described process is repeated. If the photon’s weight is neglected, the next photon is considered. The simulations finish when last photon is investigated. • Photon stepsize s : The stepsize of the photon, s , is calculated based on a random sampling of the probability density function for s : − ln ξ s= (1) µt where ξ is a random variable with the value in the range (0, 1] generated by the computer; µ t = µ a + µ s is attenuation coefficient. • Photon weighting: Every photon is initialized with a weight of unity, W = 1 . Once the photon has taken a step, some attenuation of the photon weight occurs. The new photon weight must be updated: µs W←W (2) µt • Photon movement: After each step, photon has a new position ( x ', y ', z ') calculated from the current position ( x, y, z) by: x ' = x + µx s y ' = y + µys (3) z ' = z + µz s where ( µ x , µ y , µ z ) are the direction cosines. It has a relation with a unit vector r specified the trajectory of the photon by: µx = r x µ y = r y (4) µz = r z Once the photon takes a step with deflection angle θ , azimuthal angle ψ , photon has a new ( ) ( ) by: position with the direction cosines µ x ', µ y ', µ z ' calculated from current cosines µ x , µ y , µ z sin θ (µ µ cosψ − µ y sinψ ) + µ x cosθ µx ' = x z 1 − µz 2 sin θ (µ µ cosψ − µ x sinψ ) + µ y cosθ µy ' = (5) y z 1 − µz 2 µ z ' = − sin θ cosψ 1 − µ z 2 + µ z cos θ
- 64 N.T. Anh et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 3. Measurement setup • The TMS320VC5510 DSK investigation: As the calculation of Monte Carlo simulations is time-consuming, the TMS320VC5510 DSK is investigated in order to minimize the calculation time. The multiplication of two matrixes sized n x n with differences of n is taken for investigating the DSP with different calculation volume. The obtained results are shown in table 1. Table 1. Calculation time of the multiplication of two matrixes sized n x n with different program languages (C, Assembler with and without parallel structure) Size of n Assembler & Parallel Assembler (ms) C (ms) Time ration between Time ration parallel and non- between C and structure (ms) parallel structure (%) Assembler (times) 4 13 14 170 107.69 13.08 6 26 28 543 107.69 20.88 8 47 51 1209 108.51 25.72 10 79 87 2366 110.13 29.95 12 125 138 4029 110.40 32.23 14 187 207 6331 110.70 33.86 16 267 294 9608 110.11 35.99 18 368 405 14742 110.05 40.06 20 493 543 20135 110.14 40.84 22 643 708 27353 110.11 42.54 24 821 905 34570 110.23 42.11 26 1029 1135 44607 110.30 43.35 28 1270 1401 54644 110.31 43.03 30 1547 1695 67086 109.57 43.37 32 1862 2051 78772 110.15 42.31 34 2216 2435 97363 109.88 43.94 36 2613 2863 115431 109.57 44.18 38 3056 3334 138718 109.10 45.39 40 3405 3750 198005 110.13 58.15 42 3715 4112 271025 110.69 72.95 44 4005 4592 424101 114.66 105.89 46 4315 5105 555435 118.31 128.72 48 4507 5773 650253 128.09 144.28 50 4640 6400 724063 137.93 156.05 52 4755 7087 776405 149.04 163.28 Fig. 3 illustrates the dependence of calculation time on size n of the matrixes when the calculation programs is written in C language and in Assembler using parallel technique.
- 65 N.T. Anh et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 8000 7000 Parallel technique (ms) Calculation time (ms) 6000 Non parallel technique (ms) 5000 4000 3000 2000 1000 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Size of matrixes Fig. 3. Calculation time when the program are written in Assembler in two cases: with and without parallel techniques. Fig. 3 shows that: normally, when using parallel technique, the calculation time is reduced by around 10% but when the volume getting higher, using parallel technique allows to reduce calculation time up to 50% (Fig. 4). 160.00 140.00 Calculation Ration (%) 120.00 100.00 80.00 60.00 40.00 20.00 0.00 4 8 12 16 20 24 28 32 36 40 44 48 52 Size of matrixes Fig. 4. Calculation time ration between Assembler with and without parallel techniques. The differences of the calculation time when the program written in C and written in Assembler with parallel technique are shown in Fig. 5. 900000 800000 Calculation time (ms) 700000 Parallel technique (ms) 600000 C (ms) 500000 400000 300000 200000 100000 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Size of matrixes Fig. 5. Calculation time when the programs are written in C and in Assembler.
- 66 N.T. Anh et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 From Fig. 5, one can see that the calculation time increases quickly with the increasing of the calculation volume when the program written in C language. Fig. 6 shows the dependence of the calculation time ration on the calculation volume between two cases: the program written in C and the program written in Assembler using parallel technique. 180.00 160.00 Calculation Ration (times) 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00 4 8 12 16 20 24 28 32 36 40 44 48 52 Size of matrixes Fig. 6. Calculation time ration between the program written in C and the program written in Assembler using parallel technique. As indicated in Fig. 6, normally, the calculation time when the program writen in C is 50 times higher than one writen in Assembler using parallel technique but with the increasing the calculation volume, the ration will increase as high as hundred times. From the above DSP investigation, we can conclude as followings: 1) The calculation time when the program written in C language is more than the calculation time when the program written in Assembler using parallel technique from tens to hundred times; 2) In comparision with non-using parallel technique, using parallel technique allows to reduce calculation time up to 50%. • Optical parameters measurement setup: Fig. 7. Optical parameter measurement based on MC simulations and DSP.
- 67 N.T. Anh et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 The measurement to verify optical parameters based on Monte Carlo simulations and the Texas Instrument TMS320VC5510 DSK kit is shown in Fig. 7. Algorithms for the Monte Carlo simulations are loaded into flash of the DSP board through the DSP’s JTAG interface. The input signals: R d , Td , and Tc , after being converted into digital signals are sent to SDRAM of the DSP in parallel through the DSK’s Memory Expansion Connector. The interfaces between the ADC board, the DSP board and the PC are illuminated in Fig. 8. Fig. 8. Interfaces between the ADC, the DSP and the PC. The flowchart for data access is shown in Fig. 9. Fig. 9. Flowchart for data access.
- 68 N.T. Anh et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 It is needed to measure 3 parameters: µ a , µ s and g , thus, 3 windows are created with 400 sampling points for each one. 3 inputs corresponding to R d , Td , and Tc are selected one by one for each sampling point. In other words, all inputs are periodically scanned and each scan includes 3 sampling points corresponding to 3 inputs. After being converted into digital signals, these sampling points are stored and calculated in SDRAM of the DSP board before sending to the PC. 4. Results and discussion For measurement, homogenised fresh milk with fat concentration of 4% has been used. A series of samples with increasing milk concentrations has been prepared by mixing fresh milk with distilled water. The absorption coefficient µ a , scattering coefficient µ s and anisotropy g with a light source at 820nm have been calculated by Monte Carlo simulations. The result with a certain concentration between 0% vol. to 5% vol. has been monitored in three windows respectively (Fig. 10). Fig. 10. Optical parameters of homogenised fresh milk calculated by MC simulations. The measurement for µ a , µ s and g by Monte Carlo simulations with different milk concentrations is presented in Fig. 11. By increasing the concentrations, both absorption and scattering coefficients increase gradually and then reach their own saturated values at 4.5 ± 0.2mm-1 and 60 ± 2mm-1 r espectively for concentrations higher than 5% vol.. These results are in good agreement with other related works [7]. Moreover, from Fig. 11, one can see that from 0.8 to 2.0% vol., µa , µs vary linearly. As for the anisotropy factor g , it decreases from 0.99 at low concentrations to a stable value of 0.982 ± 0.005 for concentrations higher than 5% vol..
- 69 N.T. Anh et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 70.000 4.500 4.000 60.000 3.500 50.000 3.000 Ma [1/mm] Ms [1/mm] 40.000 2.500 2.000 30.000 1.500 20.000 1.000 10.000 0.500 0.000 0.000 0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60 0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60 Milk concentration (%) Milk concentration (%) b) a) 0.994 0.992 0.990 Fig. 11. Concentration-dependence: 0.988 a) Absorption coefficient; 0.986 g b) Scattering coefficient; 0.984 c) Anisotropy. 0.982 0.980 0.978 0.976 0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60 Milk concentration (%) c) 5. Conclusion The Texas Instrument TMS320VC5510 DSK is investigated for minimum the calculation time. The obtained results show that in the comparision with non-using parallel technique, using parallel technique allows to reduce the calculation time up to 50%. Moreover, the calculation time can be reduced to hundred times if the program is written in Assembler (using parallel technique) rather than in C language. After the DSP’s investigation, the optical parameters including absorption coefficient µ a , scattering coefficient µ s and anisotropy g of homogenised fresh milk with different concentrations have been measured. The measurement is taken by using Monte Carlo simulations embedded into the Texas Instrument TMS320VC5510 DSK kit through the DSP’s JTAG interface. The obtained results show that for concentrations higher than 5% vol., µ a , µ s and g get their stable values at 4.5 ± 0.2mm-1, 60 ± 2mm-1 and 0.982 ± 0.005 respectively.
- 70 N.T. Anh et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 61-70 References [1] Charles L. Gallegos, “Optical water quality of a blackwater river estuary: the Lower St. Johns River, Florida, USA”, Estuarine, Coastal and Shelf Science, Elsevier B63 (1) (2005) 57. [2] Paul Kubelka, “New Contributions to the Optics of Intensely Light-Scattering Materials. Part I”, Optical Society of America B38(5) (1948) 448. [3] Olaf Minet, Dang Xuan Cu, Nguyen Tuan Anh, Gerhard J. Muller, Urszula Zabarylo, “Laboratory test of mobile laser equipment for monitoring of water quality”, Proc. of SPIE B7(36) (2006) 61630N. [4] G. Jagajothi, S. Raghavan, “An Overview and Biological Tissues Characteristics Using Optical Simulation Method”, WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE, B4(1), ISSN: 1109-9518, 2007. [5] J.T.O. Kirk, “Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters”, Australian Journal of Marine and Freshwater Resource B32 (1981) 517. [6] Spectrum Digital, Inc., TMS320VC5510 DSK Technical Reference, 506205-0001 Rev. C, 2002. [7] M.D. Waterworth, B.J. Tarte, A.J. Joblin, T. van Doorn, H.E. Niesler, “Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging”, Australas Phys Eng Sci Med. B18(1) (1995) 39.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU CHẤT LƯỢNG NƯỚC VÀ TÔM TỰ NHIÊN TRONG CÁC MÔ HÌNH TÔM RỪNG Ở CÀ MAU"
12 p | 1363 | 120
-
Báo cáo nghiên cứu khoa học: "Cái tôi trữ tình trong thơ Nguyễn Quang Thiều."
10 p | 614 | 45
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU PHỐI TRỘN CHI TOSAN – GELATI N LÀM MÀNG BAO THỰC PHẨM BAO GÓI BẢO QUẢN PHI LÊ CÁ NGỪ ĐẠI DƯƠNG"
7 p | 518 | 45
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU THỰC NGHIỆM ẢNH HƯỞNG CỦA MƯA AXÍT LÊN TÔM SÚ (PENAEUS MONODON)"
5 p | 454 | 44
-
Báo cáo nghiên cứu khoa học: "ỨNG DỤNG PHƯƠNG PHÁP PCR-GENOTYPI NG (ORF94) TRONG NGHIÊN CỨU VI RÚT GÂY BỆNH ĐỐM TRẮNG TRÊN TÔM SÚ (Penaeus monodon)"
7 p | 378 | 35
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC DINH DƯỠNG CÁ ĐỐI (Liza subviridis)"
6 p | 378 | 31
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC SINH SẢN CỦA CÁ ĐỐI (Liza subviridis)"
8 p | 331 | 29
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU CẢI TIẾN HỆ THỐNG NUÔI KẾT HỢP LUÂN TRÙNG (Brachionus plicatilis) VỚI BỂ NƯỚC XANH"
11 p | 385 | 29
-
Báo cáo nghiên cứu khoa học: "Quan hệ giữa cấu trúc và ngữ nghĩa câu văn trong tập truyện ngắn “Đêm tái sinh” của tác giả Trần Thuỳ Mai"
10 p | 434 | 24
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU TẠO KHÁNG THỂ ĐƠN DÒNG VI-RÚT GÂY BỆNH HOẠI TỬ CƠ QUAN TẠO MÁU VÀ DƯỚI VỎ (IHHNV) Ở TÔM PENAEID"
6 p | 354 | 23
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU ƯƠNG GIỐNG VÀ NUÔI THƯƠNG PHẨM CÁ THÁT LÁT (Notopterus notopterus Pallas)"
7 p | 306 | 22
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC CÁ KẾT (Kryptopterus bleekeri GUNTHER, 1864)"
12 p | 298 | 20
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU DÙNG ARTEMIA ĐỂ HẠN CHẾ SỰ PHÁT TRIỂN CỦA TIÊM MAO TRÙNG (Ciliophora) TRONG HỆ THỐNG NUÔI LUÂN TRÙNG"
10 p | 367 | 18
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU PHÂN VÙNG THỦY VỰC DỰA VÀO QUẦN THỂ ĐỘNG VẬT ĐÁY"
6 p | 347 | 16
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU THIẾT LẬP HỆ THỐNG NUÔI KẾT HỢP LUÂN TRÙNG (Brachionus plicatilis) VỚI BỂ NƯỚC XANH"
10 p | 372 | 16
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU THAY THẾ THỨC ĂN SELCO BẰNG MEN BÁNH MÌ TRONG NUÔI LUÂN TRÙNG (Brachionus plicatilis) THÂM CANH"
10 p | 347 | 15
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU ƯƠNG GIỐNG CÁ KẾT (Micronema bleekeri) BẰNG CÁC LOẠI THỨC ĂN KHÁC NHAU"
9 p | 258 | 9
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU SỰ THÀNH THỤC TRONG AO VÀ KÍCH THÍCH CÁ CÒM (Chitala chitala) SINH SẢN"
8 p | 250 | 7
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn