Báo cáo nghiên cứu khoa học: " NEURAL NETWORK CONTROL OF PNEUMATIC ARTIFICIAL MUSCLE MANIPULATOR FOR KNEE REHABILITATION"
lượt xem 9
download
Một sự thay thế thú vị để các thiết bị truyền động điện cho các mục đích y tế, đặc biệt đầy hứa hẹn cho phục hồi chức năng, thiết bị truyền động một nhân tạo cơ khí nén (PAM) vì cơ bắp như các thuộc tính như thể điều chỉnh độ cứng, độ bền cao với tỷ lệ trọng lượng, cấu trúc linh hoạt, sạch sẽ, sẵn có vànguồn điện giá rẻ, an toàn vốn có và hỗ trợ di động đối với con người thực hiện nhiệm vụ....
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Báo cáo nghiên cứu khoa học: " NEURAL NETWORK CONTROL OF PNEUMATIC ARTIFICIAL MUSCLE MANIPULATOR FOR KNEE REHABILITATION"
- Science & Technology Development, Vol 11, No.03- 2008 NEURAL NETWORK CONTROL OF PNEUMATIC ARTIFICIAL MUSCLE MANIPULATOR FOR KNEE REHABILITATION Tu Diep Cong Thanh, Tran Thien Phuc University of Technology, VNU-HCM Received on November 01st, 2007, Manuscript Revised March 03rd, 2008) (Manuscript ABSTRACT: An interesting alternative to electric actuators for medical purposes, particularly promising for rehabilitation, is a pneumatic artificial muscle (PAM) actuator because of its muscle–like properties such as tunable stiffness, high strength to weight ratio, structure flexibility, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. Then it is not easy to realize the performance of transient response of PAM manipulator due to the changes in the physical condition of patients as well as the various treatment methods. In this study, an intelligent control algorithm using neural network for one degree of freedom manipulator is proposed for knee rehabilitation. The experiments are carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm is demonstrated through experiments with two conditions of patient and three kinds of treatment methods. Keywords: Knee rehabilitation, Pneumatic artificial muscle, Intelligent control, Neural network 1. INTRODUCTION There is an increasing trend in using robots for medical purposes. One specific area is the rehabilitation. There is some commercial exercise machines used for rehabilitation purposes. However, these machines have limited use because of their insufficient motion freedom. In addition, these types of machines are not actively controlled and therefore can not accommodate complicated exercises required during rehabilitation. An interesting alternative to electric actuators for medical purposes, particularly promising for rehabilitation, is a PAM actuator. PAM is a novel actuator which has greater proximity to human operator than the others. Besides, it inherits advantages from pneumatic actuator such as: cheap, quick respond time, simple execution (Table [1]), the most important characteristic of PAM which makes it an optimizing actuator for medical and welfare fields is the human compliance. However, the complex nonlinear dynamics of PAM make it challenging to realize the transient with respect to the changes in the physical condition of patients as well as the various treatment methods. In order to realize satisfaction control performance of PAM manipulator, many control strategies have been proposed. Starting with linear control techniques, the strategy of PID control has been one of the most sophisticated methods and frequently used in the industry due to its simple architecture, easy tuning, cheap and excellent performance [1-2]. However, the conventional PID is difficult to determine the appropriate PID gains in case of nonlinear and unknown controlled plants. Various modified forms of this control strategy have been developed to improve its performance such as: an adaptive/self-tuning PID controller [3], self- tuning PID control structures [4], self-tuning PID controller [5], self-tuning predictive PID controller [6], and so on.. Though satisfactory performance can be obtained and the proposed controllers above provide better response, these controllers are still limited because of the Trang 16
- TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 11, SỐ 03 - 2008 limitation of capability of learning algorithm, automatically tuning control parameters and not yet handling nonlinear characteristic To overcome these deficiencies, intelligent control techniques have emerged as highly potential methods. One of these novel intelligent theories includes well-known artificial neural network. There are many successful commercial and industrial applications using neural network based controlling techniques in recent years. A Kohonen-type neural network was used for the position control of robot end-effector within 1 cm after learning [7]. Recently, the authors have developed a feed forward neural network controller and accurate trajectory was obtained, with an error of 1[0][8]. An intelligent control using a neuro-fuzzy network was proposed by Iskarous and Kawamura [9]. A hybrid network that combines fuzzy and neural network was used to model and control complex dynamic systems, such as the PAM system. An adaptive controller based on the neural network was applied to the artificial hand, which is composed of the PAM [10]. The controller adapts well with changing environment and shows good capability in managing complex nonlinearity of PAM. Here, we are going to apply this strategy into the knee rehabilitation device in the endeavor of automating medical systems and proving utilities of the proposed controller. The organization of the paper is as follows: Section 2 is about the knee rehabilitation experimental setup. The proposed controller is mentioned in section 3 with structure and learning algorithm while the experiment results are taken up in section 4. Section 5 will conclude the paper. 2. EXPERIMENTAL SETUP Recently, there are some commercial knee rehabilitation devices. These devices are excellent both in model and operations. However, there are still some limitations mainly originating from the very nature of the actuator – motor, which is lack of human compliance and make it potentially harmful to patients. Therefore, the knee rehabilitation device which uses PAM (FESTO, MAS-40-N-300-AA-MCFK) as actuator is constructed and the photograph of the device is shown in Fig. 1. The system includes a personal computer which used to control the proportional valve (FESTO, MPYE-5-1/8HF-710B) through D/A board (ADVANTECH, PCI 1711). The schematic diagram of the system and working principle can easily be seen in Fig.2 and Fig.3, respectively. A rotary encoder (METRONIX, H40-8- 3600ZO) is used to measure the angular input from the device and fed back to the computer through a 32-bit digital counter board (ADVANTECH, PCI 1784). The lists of experimental hardware are tabulated in Table 2. The external load conditions are considered in two cases: with and without the patient. The experiments are conducted under the pressure of 0.4 [MPa] and all control software is coded in Visual Basic program language. Table 1. Comparison of actuators Actuator Advantages Disadvantages Pneumatics Cheap, quick response time, Position control difficult, fluid Hydraulics simple control compressible, noisy High power/weight ratio, low Less reliable, expensive, servo control Electrics backlash, very strong, direct drive complex, noisy possible Low power and torque/weight ratios, Accurate position and velocity possible sparking control, quiet, relative cheap. Trang 17
- Science & Technology Development, Vol 11, No.03- 2008 Table 2. Experimental hardware No. Name Model name Company 1 Proportional Valve MPYE-5-1/8HF-710 B Festo 2 Pneumatic Artificial MAS-40-N-300-AA- Festo Muscle MCFK 3 A/D board PCI 1711 Advantech 4 Rotation Encoder H40-8-3600ZO Metronix 5 32-bit digital counter board PCI 1784 Advantech Fig.1. Photograph of the experimental apparatus Fig.2. Schematic diagram pf PAM manipulator As being proved above, PAM is an optimistic actuator for medical and human welfare field and therefore rehabilitation. Nonetheless, it is rarely applied to this field due to the difficulty in position control. Fig.3. Working principle of PAM manipulators Trang 18
- TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 11, SỐ 03 - 2008 3. CONTROL SYSTEM The strategy of PID control has been one of the sophisticated methods and most frequently used in industry. This is because that the PID controller has a simple form and strong robustness in broad operating area. However, the requirement of control precision becomes higher and higher, as well as the plants become more and more complex. In order to achieve the satisfactory control performance, we have to consider the effect of the hysteresis and disturbance of the PAM manipulator. Hence, the conventional PID controller with fixed parameters may usually deteriorate the control performance. Various types of modified PID controllers have been developed such as intelligent PID control, self-tuning discrete PID controller, self-tuning predictive PID controller, and so on [11]. Fig. 4. Structure of proposed controller However, if severe nonlinearity is involved in the controlled process, a nonlinear control scheme will be more useful, particularly in case of high nonlinearity of the PAM manipulator. Nowadays, neural networks have been proved to be a promising approach to solve complex nonlinear control problems. Hence, it motivates us to combine neural network with PID control. It is anticipated that the combination will take the advantage of simplicity of PID control and the neural network’s powerful capability of learning, adaptability and tackling nonlinearity. And the input signal of the sigmoid function in the output layer, x , becomes: x(k ) = e p (k ) × K p (k ) + ei (k ) × K i (k ) (1) +ed (k ) × K d (k ) Where, ep (k ) = θ ref (k ) − θ (k ); k ei (k ) = ∑ ep (n)ΔT n =1 ep (k )(1 − z −1 ) (2) ed (k ) = ΔT ΔT : sampling time, k : discrete sequence z : operator of Z − transform θ ref (k ) and θ (k ) are the desired reference input and the output of system, respectively. Trang 19
- Science & Technology Development, Vol 11, No.03- 2008 The control input, u , can be obtained from the following equation: 1 u (k ) = f ( x(k )) = (3) 1 + e− x ( k ) To tune the gains of the proposed controller, the well-known steepest descent method using the following equation was applied: ∂E (k ) K p (k + 1) = K p (k ) − η p ∂K p ∂E (k ) K i (k + 1) = K i (k ) − ηi (4) ∂K i ∂E (k ) K d (k + 1) = K d (k ) − ηd ∂K d Where η p , ηi , η d are learning rates determining convergence speed, and E (k ) is the error defined by the following equation: 1 (θref (k ) − θ (k ) ) 2 E (k ) = (5) 2 From Eq. (5), using the chain rule, we get the following equations: ∂E (k ) ∂E (k ) ∂θ (k ) ∂u (k ) ∂x(k ) = ∂θ ∂K p ∂u ∂x ∂K p ∂E (k ) ∂E (k ) ∂θ (k ) ∂u (k ) ∂x(k ) = (6) ∂θ ∂K i ∂u ∂x ∂Ki ∂E (k ) ∂E (k ) ∂θ (k ) ∂u (k ) ∂x(k ) = ∂θ ∂K d ∂u ∂x ∂K d The following equations are derived by using Eqs. (1), (3) and (5): ∂E (k ) = − (θ ref (k ) − θ (k ) ) = −e p (k ) ∂θ ∂u (k ) ∂x(k ) = f ' ( x(k ) ) ; = e p (k ); (7) ∂x ∂K p ∂x(k ) ∂x(k ) = ei (k ); = ed (k ) ∂K i ∂K d And the following expression can be derived from these Eqs. (6) and (7). ∂θ ( k ) ∂E ( k ) f ' ( x(k ) ) e p (k ) = −e p (k ) ∂K p ∂u ∂θ ( k ) ∂E ( k ) f ' ( x(k ) ) e i (k ) (8) = −e p (k ) ∂K i ∂u ∂θ ( k ) ∂E ( k ) f ' ( x(k ) ) e d (k ) = −e p (k ) ∂K d ∂u Trang 20
- TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 11, SỐ 03 - 2008 e− x ( k ) f ′( x(k )) = (1 + e ) 2 − x(k ) and (9) = f ( x(k )) (1 − f ( x(k ) ) ∂θ (k ) = 1 is assumed [12]. Then the As done by Yamada and Yabuta, for convenience, ∂u Eq. (6) is expressed as follows: K p (k + 1) = K p (k ) + η p e p (k )e p (k ) (1 − f ( x(k ) ) f ( x(k )) K i (k + 1) = Ki (k ) + (10) ηi e p (k )ei (k ) (1 − f ( x(k ) ) f ( x(k )) K d (k + 1) = K d (k ) + ηd e p (k )ed (k ) (1 − f ( x(k ) ) f ( x(k )) The effectiveness of the proposed nonlinear PID control strategy with tuning algorithm of Kp, Ki, Kd will be demonstrated through experiments of position control with three kinds of treatment methods. 4. EXPERIMENTAL RESULTS Experiments were carried out with respect to two conditions: without patient and with patient and three kinds of treatment methods (references are sinusoidal, triangular and trapezoidal). The comparisons of control performance between the conventional PID and the proposed controller were also performed. Figure 5 shows the experimental results of conventional PID controller in two cases of the patient and with respect to three kinds of treatment methods. Trang 21
- Science & Technology Development, Vol 11, No.03- 2008 Conventional PID Controller S inusoidal Reference W ithout Load Condition W ith Load Condition 20 θ[] o 10 0 W ithout Load Condition 10 W ith Load Condition 5 e[] o 0 -5 0 20 40 60 80 T ime [s] (a) C onventional PID Controller T riangular Reference W ithout Load Condition W ith Load Condition 20 θ[] o 10 0 W ithout Load Condition 5 W ith Load Condition e[] o 0 -5 0 20 40 60 80 Time [s] (b) C onventional PID Controller T rapezoidal Reference W ithout Load Condition W ith Load Condition 20 θ[] 10 o 0 W ithout Load Condition W ith Load Condition 5 e[] o 0 0 20 40 60 80 Time [s] (c) Fig.5. Experimental results of conventional PID controller in both conditions (a): Sinusoidal Reference; (b): Triangular Reference; (c): Trapezoidal Reference Trang 22
- TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 11, SỐ 03 - 2008 W ithout load Condition S inusoidal Reference P roposed Controller P ID COntroller 20 θ[] o 10 0 P roposed Controller 5 P ID Controller e[] o 0 0 20 40 60 80 Time [s] (a) W ithout load Condition T riangular Reference P roposed Controller P ID COntroller 20 θ[] o 10 0 P roposed Controller 5 P ID Controller e[] o 0 0 20 40 60 80 Time [s] (b) W ithout load Condition T rapezoidal Reference P roposed Controller P ID COntroller 20 θ[] o 10 0 P roposed Controller 5 P ID Controller e[] o 0 0 20 40 60 80 Time [s] (c) Fig.6. Comparison between conventional PID controller and Proposed Controller in case of without the patient (a): Sinusoidal Reference; (b): Triangular Reference; (c): Trapezoidal Reference Trang 23
- Science & Technology Development, Vol 11, No.03- 2008 Without Load Condition Sinusoidal Reference Proposed Controller 20 10 θ [o] 5 0 e [o] 0 2 u [V] 0 0.30 Kp 0.15 0.15 Ki 0.00 0.14 Kd 0.07 0.00 0 20 40 60 80 Time [s] Without Load Condition Triangular Reference Proposed Controller 20 10 θ [o] 5 0 e [o] 0 5 u [V] 4 0.30 Kp 0.15 0.15 Ki 0.00 0.14 Kd 0.07 0.00 0 20 40 60 80 Time [s] Without Load Condition Trapezoidal Reference Proposed Controller 20 10 θ [o] 0 5 e [o] 0 2 1 u [V] 0 -1 -2 0.30 Kp 0.15 0.15 Ki 0.00 0.14 Kd 0.07 0.00 0 20 40 60 80 Time [s] Fig.7. Experimental result of the proposed controller in case of without the patient (a): Sinusoidal Reference; (b): Triangular Reference; (c): Trapezoidal Reference Trang 24
- TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 11, SỐ 03 - 2008 W ith load Condition S inusoidal Reference P roposed Controller P ID COntroller 20 θ[] o 10 0 P roposed Controller P ID Controller 5 e[] o 0 -5 0 20 40 60 80 Tim e [s] (a) W ith load Condition T riangular Reference P roposed Controller P ID COntroller 20 θ[] o 10 0 P roposed Controller 5 P ID Controller e[] o 0 -5 0 20 40 60 80 Tim e [s] (b) W ith load Condition T rapezoidal Reference P roposed Controller P ID COntroller 20 θ[] o 10 0 P roposed Controller P ID Controller 5 e[] o 0 -5 0 20 40 60 80 Tim e [s] (c) Fig.8. Comparison between conventional PID controller and Proposed Controller in case of with the patient (a): Sinusoidal Reference; (b): Triangular Reference; (c): Trapezoidal Reference Trang 25
- Science & Technology Development, Vol 11, No.03- 2008 With Load Condition Sinusoidal Reference Proposed Controller 20 θ[] o 10 5 0 e[] o 0 2 u [V] 0 0.30 Kp 0.15 0.30 0.15 Ki 0.00 -0.15 0.14 Kd 0.07 0.00 0 20 40 60 80 Time [s] With Load Condition Triangular Reference Proposed Controller 20 θ[] o 10 5 0 e[] o 0 5 u [V] 4 0.30 Kp 0.15 0.30 0.15 Ki 0.00 -0.15 0.14 Kd 0.07 0.00 0 20 40 60 80 Time [s] With Load Condition Trapezoidal Reference Proposed Controller 20 10 θ[] o 5 0 e[] o 0 2 u [V] 0 -2 0.30 Kp 0.15 0.30 0.15 Ki 0.00 -0.15 0.14 Kd 0.07 0.00 0 20 40 60 80 Time [s] Fig.9. Experimental result of the proposed controller in case of with the patient (a): Sinusoidal Reference; (b): Triangular Reference; (c): Trapezoidal Reference The parameters of PID controller are chosen as follows: Kp = 0.1, Ki = 0.02, Kd = 0.01. These gains are obtained by trial-and-error through experiments. From Fig. 5, there was overshoot in the response of the system in case of without the patient and had a long settling time, more delay, large tracking error with respect to the condition with the patient addition. Therefore, it is requested that the control parameters should be adjusted according to the Trang 26
- TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 11, SỐ 03 - 2008 change of the external condition. Thus, the experiments were carried out to verify the effectiveness of the proposed controller. Fig.6 shows the comparison between the conventional PID controller and proposed controller in case of without the load condition and with respect to three kinds of the treatment methods and the updating of each control parameter (Kp, Ki, Kd) was shown in Fig 7. In the experiment of the proposed controller, the initial values of Kp, Ki and Kd are set to be the same of the control parameters of PID controller. The purpose of this experiment is to show the effectiveness of the adaptability of control parameter to get better performance. The learning rates in Eq. (10) are set to beη p = 0.01 , ηi = 0.01 and ηd = 0.01 , which are also obtained by trial-and-error through experiments. From Fig. 6, it is understood that the system response of the proposed controller is good agreement with that of reference input and it is demonstrated that the proposed control algorithm is effective in case of without the patient addition. From Fig. 7, the change of each control parameter was shown, where these control parameter turn automatically in order to get high response and tracking performance. Next, experiments were carried out to investigate the control performance with the patient addition. In Fig. 8, comparison between the conventional PID controller and the proposed controller was performed. The initial values of Kp, Ki and Kd , used in the experiment, are the same as those of no patient addition. The gain tuning of the proposed controller is shown in Fig. 9. The effectiveness of the proposed controller with respect to the patient addition is verified by the above experiments. From the experiments, it was verified that the proposed control algorithm is a good strategy not only with Knee Rehabilitation Device but also many other medical devices using PAM manipulator. 5. CONCLUSION It is shown that the proposed control method had a good performance for the Knee Rehabilitation Device using PAM actuator. It can be seen from experimental results that the controller had an adaptive control capability and the control parameters were optimized via the steepest descent algorithm. The controller designed by this method does not need any training procedure in advance, but it uses only the input and output of the plant for the adaptation of control parameter and can tune the parameters iteratively. From the experiments of the position control of the PAM manipulator in this study, it was verified that the proposed control algorithm is one of effective method to develop a practically available Knee Rehabilitation Device by using PAM manipulator. Trang 27
- Science & Technology Development, Vol 11, No.03- 2008 BỘ ĐIỀU KHIỂN MẠNG NƠ RON SỬ DỤNG CHO THIẾT BỊ PHỤC HỒI KHỚP GỐI KIỂU KHÍ NÉN Từ Diệp Công Thành, Trần Thiên Phúc Trường Đại học Bách Khoa, ĐHQG - HCM TÓM TẮT: Một cơ cấu chấp hành được xem sẽ thay thế cho các cơ cấu chấp hành điện trong các mục tiêu y tế, đặc biệt trong phục hồi chức năng là cơ bắp nhân tạo phỏng sinh học, bởi vì những tính năng giống cơ bắp người như thay đổi được độ cứng, tỷ số lực/khối lượng lớn, cấu trúc mềm dẻo, sạch sẽ, an toàn v.v..Tuy nhiên, một số vần đề cần quan tâm như tính nén của khí, hệ số giảm chấn thấp sẽ làm cho hệ thống không dễ điều khiển và dễ bị dao động. Do đó không dễ có được đáp ứng tốt khi hệ thống được ứng dụng cho phục hồi chức năng với các điều kiện bệnh lý khác nhau của bệnh nhân và với các phương pháp điều trị khác nhau. Bài báo giới thiệu một bộ điều khiển dùng noron để điều khiển tay máy một bậc tự do nhằm ứng dụng cho phục hồi chức năng khớp gối. Kết quả thực nghiệm sẽ minh chứng sự ưu việt của bộ điều khiển với các điều kiện bệnh lý khác nhau của bệnh nhân và các phương pháp trị liệu khác nhau. REFERENCES [1]. Bennett, S., Development of the PID controller, in IEEE, Control Systems Magazine, Vol. 13, pp. 58~62, (1993). [2]. Caldwell, D. G., Medrano-Cerda, G. A., and Goodwin, M. J., Braided pneumatic actuator control of a multi-jointed manipulator, in Proc., IEEE Int., Conf., Systems, Man and Cybernetics, Le Touque, France, pp. 423~428,( 1993).. [3]. Grassi, E., Tsakalis, K.S., Dash, S., Gaikwad, S.V. and Stein, G., Adaptive/self-tuning PID control by frequency loop-shaping, in Proc., IEEE Int., Conf., Decision and Control, Vol. 2 pp. 1099~1101, (2000). [4]. Gawthrop, P.J., Self-tuning PID control: algorithms and implementation, in IEE Trans, Vol. AC31, No. 3, pp. 201~209, (1986). [5]. Yamamotor, T., Oki, T., and Kaneda, M., Discrete time advance PID control systems for unknown time delay systems and their applications, Trans., Electrical Engineering, Japan, Vol. 118, No.13 pp. 50~57, (1997).. [6]. Vega, P., Prada, C., Aleixander, V., Self-tuning predictive PID controller, in IEE Proc., Vol. 3, pp. 303~311, (1991).. [7]. T. Hesselroth, K. Sarkar, P. Patrick van der Smagt, and K. Schulten, Neural network control of a pneumatic robot arm, IEEE Trans Syst., Man., Cybernetics, vol. 24, pp. 28-38, (1994).. [8]. P. Patrick V.D. Smagt, F. Groen, and K. Schulten, Analysis and control of a Rubbertuator arm, Biol. Cybernet, vol. 75, pp. 433-440, (1996). [9]. M. Iskarous, and K. Kawamura, Intelligent control using a neuro-fuzzy network, in Proc., IEEE/RSI Int., Conf., Intelligent Robots and Systems, vol. 3, pp. 350-355, (1995). Trang 28
- TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 11, SỐ 03 - 2008 [10]. M. Folgheraiter, G. Gini, M. Perkowski, and M. Pivtoraiko, Adaptive Reflex Control for an Artificial Hand, in Proc., SYROCO 2003, Symposium on Robot Control, (2003). [11]. Astrom, K., J., Hang, C., C., Persson, P., and Ho, W., K., Toward intelligent PID control, in Int., Conf., Automatic, pp. 1-9, (1992). [12]. Yamada, T., Yabuta, T., Neural network controller using autotuning method for nonlinear functions, in IEEE Trans., Neural Networks, Vol. 3, pp. 595-601, (1992). Trang 29
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU CHẤT LƯỢNG NƯỚC VÀ TÔM TỰ NHIÊN TRONG CÁC MÔ HÌNH TÔM RỪNG Ở CÀ MAU"
12 p | 1363 | 120
-
Báo cáo nghiên cứu khoa học: "Cái tôi trữ tình trong thơ Nguyễn Quang Thiều."
10 p | 614 | 45
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU PHỐI TRỘN CHI TOSAN – GELATI N LÀM MÀNG BAO THỰC PHẨM BAO GÓI BẢO QUẢN PHI LÊ CÁ NGỪ ĐẠI DƯƠNG"
7 p | 518 | 45
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU THỰC NGHIỆM ẢNH HƯỞNG CỦA MƯA AXÍT LÊN TÔM SÚ (PENAEUS MONODON)"
5 p | 454 | 44
-
Báo cáo nghiên cứu khoa học: "ỨNG DỤNG PHƯƠNG PHÁP PCR-GENOTYPI NG (ORF94) TRONG NGHIÊN CỨU VI RÚT GÂY BỆNH ĐỐM TRẮNG TRÊN TÔM SÚ (Penaeus monodon)"
7 p | 378 | 35
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC DINH DƯỠNG CÁ ĐỐI (Liza subviridis)"
6 p | 380 | 31
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC SINH SẢN CỦA CÁ ĐỐI (Liza subviridis)"
8 p | 331 | 29
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU CẢI TIẾN HỆ THỐNG NUÔI KẾT HỢP LUÂN TRÙNG (Brachionus plicatilis) VỚI BỂ NƯỚC XANH"
11 p | 385 | 29
-
Báo cáo nghiên cứu khoa học: "Quan hệ giữa cấu trúc và ngữ nghĩa câu văn trong tập truyện ngắn “Đêm tái sinh” của tác giả Trần Thuỳ Mai"
10 p | 436 | 24
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU TẠO KHÁNG THỂ ĐƠN DÒNG VI-RÚT GÂY BỆNH HOẠI TỬ CƠ QUAN TẠO MÁU VÀ DƯỚI VỎ (IHHNV) Ở TÔM PENAEID"
6 p | 354 | 23
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU ƯƠNG GIỐNG VÀ NUÔI THƯƠNG PHẨM CÁ THÁT LÁT (Notopterus notopterus Pallas)"
7 p | 306 | 22
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC CÁ KẾT (Kryptopterus bleekeri GUNTHER, 1864)"
12 p | 298 | 20
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU DÙNG ARTEMIA ĐỂ HẠN CHẾ SỰ PHÁT TRIỂN CỦA TIÊM MAO TRÙNG (Ciliophora) TRONG HỆ THỐNG NUÔI LUÂN TRÙNG"
10 p | 367 | 18
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU PHÂN VÙNG THỦY VỰC DỰA VÀO QUẦN THỂ ĐỘNG VẬT ĐÁY"
6 p | 348 | 16
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU THIẾT LẬP HỆ THỐNG NUÔI KẾT HỢP LUÂN TRÙNG (Brachionus plicatilis) VỚI BỂ NƯỚC XANH"
10 p | 373 | 16
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU THAY THẾ THỨC ĂN SELCO BẰNG MEN BÁNH MÌ TRONG NUÔI LUÂN TRÙNG (Brachionus plicatilis) THÂM CANH"
10 p | 347 | 15
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU ƯƠNG GIỐNG CÁ KẾT (Micronema bleekeri) BẰNG CÁC LOẠI THỨC ĂN KHÁC NHAU"
9 p | 258 | 9
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU SỰ THÀNH THỤC TRONG AO VÀ KÍCH THÍCH CÁ CÒM (Chitala chitala) SINH SẢN"
8 p | 250 | 7
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn