intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU SỬ DỤNG HỆ MỜ-NƠRON ĐIỀU KHIỂN MỨC CHẤT LỎNG CHO HỆ BỒN NƯỚC ĐÔI."

Chia sẻ: Nguyễn Phương Hà Linh Linh | Ngày: | Loại File: PDF | Số trang:7

118
lượt xem
18
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài báo này trình bày kết quả nghiên cứu việc sử dụng hệ mờ-nơron điều khiển mức chất lỏng cho hệ bồn nước đôi. Nội dung bài báo giới thiệu mô hình của hệ mờ-nơron, là sự kết hợp mạng nơron và điều khiển mờ để tạo ra bộ điều khiển nhiều ngõ vào – nhiều ngõ ra, điều khiển cho đối tượng phi tuyến nhiều ngõ vào – nhiều ngõ ra (MIMO). Đối tượng được điều khiển trong đề tài là hệ bồn nước đôi......

Chủ đề:
Lưu

Nội dung Text: Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU SỬ DỤNG HỆ MỜ-NƠRON ĐIỀU KHIỂN MỨC CHẤT LỎNG CHO HỆ BỒN NƯỚC ĐÔI."

  1. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 NGHIÊN CỨU SỬ DỤNG HỆ MỜ-NƠRON ĐIỀU KHIỂN MỨC CHẤT LỎNG CHO HỆ BỒN NƯỚC ĐÔI. A STUDY ON THE USE OF THE NEURAL-FUZZY SYSTEM TO CONTROL THE LIQUID LEVEL FOR THE COUPLED TANKS SYSTEM Nguyễn Quốc Định Phan Xuân Lễ Trường Đại học Bách khoa, Đại học Đà Nẵng Trường Cao đẳng Công nghiệp Tuy Hòa TÓM TẮT Bài báo này trình bày kết quả nghiên cứu việc sử dụng hệ mờ-nơron điều khiển mức chất lỏng cho hệ bồn nước đôi. Nội dung bài báo giới thiệu mô hình của hệ mờ-nơron, là sự kết hợp mạng nơron và điều khiển mờ để tạo ra bộ điều khiển nhiều ngõ vào – nhiều ngõ ra, điều khiển cho đối tượng phi tuyến nhiều ngõ vào – nhiều ngõ ra (MIMO). Đối tượng được điều khiển trong đề tài là hệ bồn nước đôi với cấu hình 2 ngõ vào - 2 ngõ ra và đối tượng nghiên cứu là bộ điều khiển sử dụng hệ mờ-nơron để xây dựng bộ điều khiển cho đối tượng phi tuyến 2 ngõ vào - 2 ngõ ra. Thông qua việc mô phỏng hoạt động của bộ điều khiển mờ nơron này dựa trên phần mềm MATLAB – SIMULINK đã chứng minh được rằng bộ điều khiển được thiết kế đã hoạt động tốt và đáp ứng được yêu cầu đề ra. ABSTRACT This paper presents research results in using the neural-fuzzy system to control the liquid level of the coupled tanks system. This paper presents the model of neural-fuzzy system which is a combination of neural networks and fuzzy control to generate a Multi-Input-Multi- Output controller for the nonlinear Multi-Input-Multi-Output (MIMO) system. The controlled object in the coupled tanks system is configured with two inputs - two outputs and the studied object is a neural-fuzzy controller for the two-input-two-output nonlinear system. Owing to simulation of this neural fuzzy controller using the MATLAB – SIMULINK software, we have proved that the designed controller has a very good performance and meet these requirements. 1. Đặt vấn đề Hiện nay lĩnh vực điều khiển tự động đã phát triển mạnh mẽ, các bộ điều khiển được xây dựng để điều khiển cho các đối tượng khác nhau, có thể đối tượng là tuyến tính, có thể là những đối tượng phi tuyến phức tạp,… Do đó cần phải tìm kiếm các thuật toán điều khiển để đáp ứng nhu cầu thực tế. Với bộ điều khiển mờ và bộ điều khiển sử dụng mạng nơron có thêm một hướng phát triển mới trong lĩnh vực nghiên cứu thiết kế điều khiển hệ thống, có rất nhiều ứng dụng trong lĩnh vực điều khiển trong công nghiệp hiện nay. Bộ điều khiển mờ và bộ điều khiển sử dụng mạng nơron về nguyên tắc đều là những bộ điều khiển tĩnh phi tuyến. Chúng có thể được thiết kế với chất lượng hệ thống cho trước theo một độ chính xác tuỳ ý và làm việc theo nguyên lý tư duy của con người. 43
  2. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 Việc kết hợp hệ mờ và mạng nơron được sử dụng nghiên cứu trong đề tài này là mạng nơron-mờ singleton. Đây là mạng đa đầu vào và đơn đầu ra. Do đó nội dung nghiên cứu chính ở đây là sự ghép nối các mạng nơron-mờ singleton để tạo ra bộ điều khiển đa đầu vào – đa đầu ra. Cụ thể vấn đề nghiên cứu mà tác giả đưa ra trong đề tài này là xây dựng bộ điều khiển với sự ghép nối của 2 mạng nơron-mờ singleton, mục đích tạo ra bộ điều khiển mờ-nơron dựa theo luật điều khiển thích nghi và đối tượng được sử dụng để điều khiển ở đây là hệ bồn nước đôi, đây là hệ phi tuyến với 2 ngõ vào và 2 ngõ ra. 2. Mô hình đối tượng hệ bồn nước đôi [2] Mô hình đối tượng hệ bồn nước đôi được mô tả như (hình vẽ 1). Hệ bồn nước đôi làm đối tượng điều khiển là một hệ phi tuyến với 2 ngõ vào là tín hiệu điện áp điều khiển động cơ bơm nước u1(t), u2(t) và 2 ngõ ra là mức nước h1(t) và h2(t). Hình 1. Mô hình hệ bồn nước đôi Với qin1, qin2 lần lượt là lưu lượng nước máy bơm 1 và bơm 2 bơm vào bồn 1, bồn 2. qout1, qout2 lần lượt là lưu lượng nước chảy ra ngoài bồn 1, bồn 2. qout1_2, qout2_1 lần lượt là lưu lượng nước từ bồn 1 qua bồn 2 hoặc từ bồn 2 qua bồn 1. Mô hình toán đối tượng được viết [2]: ( ) ⎧• 1 ⎪h1 (t ) = A k1u1 (t ) − a1CD1 2 gh1 (t ) − CD12 sgn( h1 (t ) − h2 (t )) a12 2 g h1 (t ) − h2 (t ) (1) ⎪ 1 ⎨• ( ) ⎪h (t ) = 1 k2u2 (t ) − a2CD 2 2 gh2 (t ) + CD12 sgn( h1 (t ) − h2 (t )) a12 2 g h1 (t ) − h2 (t ) (2) ⎪2 ⎩ A2 3. Bộ điều khiển mờ-nơron Đối tượng hệ bồn nước đôi có mô hình toán học (1) và (2) là hệ phi tuyến MIMO, có 2 ngõ vào, 2 ngõ ra. 44
  3. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 Phương trình trạng thái dạng: ⎧ x = A0 x + B[ F ( x) + G ( x)u + d ] (3) ⎨ ⎩y = C x T Vì đối tượng hệ bồn nước đôi là hệ phi tuyến có tính chất phức tạp, nên phương trình trạng thái được đưa về dạng (3) là gần đúng và luật điều khiển: 1 u∗ = [− F ( x) + yr( m ) + K cT e] (4) G ( x) Trong đó yr(m) là tín hiệu đặt và e là sai lệch Trong thực tế, các mô hình toán của đối tượng điều khiển không thể chính xác, do đó không thể thực hiện theo luật điều khiển lý tưởng (4). Mặc khác, hệ đối tượng chỉ đo được ngõ ra y (với h=y là mức nước). Nên phải xây dựng bộ quan sát trạng thái để ước lượng trạng thái của hệ. ⎧ê = A0 ê − BK cT ê + K 0 ( E1 − Ê1 ) ⎪ (5) ⎨ ⎪ Ê1 = C ê T ⎩ Từ đó giải bài toán bằng cách nhận dạng trực tiếp luật điều khiển lý tưởng ∗ u (t ) bằng hệ mờ-nơron với các thông số ngõ vào là vecto sai số ê. Bộ điều khiển này sử dụng mạng nơron-mờ singleton để xấp xỉ luật điều khiển với ngõ vào của mạng là vecto sai số ước lượng. Thực hiện luật điều khiển : u = uf + v (6) ⎧u f = [u f 1 , u f 2 ,..., u fp ]T ∈ R p ⎪ Trong đó ⎨ ⎪v = [v1 , v2 ,..., v p ] ∈ R T p ⎩ v là thành phần khử nhiễu và bù sai số của mô hình đối tượng Trong phần xây dựng bộ điều khiển cho đối tượng, tác giả sử dụng hệ mờ-nơ ron với mạng Singleton có cấu trúc mạng như (hình vẽ 2). Cấu trúc mạng Singleton được thiết lập với cấu hình của hệ logic mờ gồm các luật NẾU-THÌ và cơ chế suy luận mờ. NẾU x1 là A1i và xn là An thì y là B i . i (Với A1i , A2 ,... An và B i là các tập mờ, i=1…h là số luật nếu thì). i i Cấu trúc mạng Singleton gồm 4 lớp theo [1] và [4]: - Lớp 1: Là lớp gồm có n tín hiệu x đầu vào, xT = [ x1 x2 ... xn ] . - Lớp 2: Là lớp mờ hóa, gồm có các nút thực hiện giá trị hàm liên thuộc. Mỗi nút có ngõ ra là: 45
  4. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 n µi = ∏ µ i ( x j ) (7) j =1 A kj Trong đó µ Ai ( x j ) là hàm liên thuộc mờ được chọn dạng hàm Bell: j 1 µ i (x j ) = (8) 2b A x − cij ij kj 1+ aij - Lớp 3: Là lớp thực hiện luật mờ. Mỗi nút có ngõ ra là giá trị vecto cơ sở mờ: n ∏µ (x j ) i Akj j =1 ϕ ( x) = i (9) k ⎛n ⎞ h ∑ ⎜ ∏ µ Akji ( x j ) ⎟ i =1 ⎝ j =1 ⎠ - Lớp 4: Là lớp giải mờ. Nút đại diện ngõ ra của mạng là yk: ⎛ ⎞ n h ∑ θ −i ⎜ ∏ µ A ( x j ) ⎟ i ⎝ ⎠ = θ T ϕ i ( x) = u kj i =1 j =1 yk ( x ) = (10) k fk ⎛ ⎞ n h ∑ ⎜ ∏ µ Akji ( x j ) ⎟ i =1 ⎝ j =1 ⎠ ⎧ x = A x + B[ F ( x) + G( x)u + d ] 0 yk ⎪ uk ⎨ ⎪ y = CT x ykr ⎩ (Plant) (E1-Ê1) K0 ê = A0 ê − BK cT ê + K 0 ( E1 − Ê1 ) ê Ê1 CT Mạng Singleton xấp xỉ u fk = θ T ϕ ki (ê) (E1-Ê1) Ước lượng online θ k (E1-Ê1) Tính v Hình 3. Giải thuật điều khiển 46
  5. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 µA (x j ) Trong đó là giá trị hàm liên thuộc của biến mờ xj ; i kj θ T = [θ k−1 ,θ k−2 ,...,θ k− h ]T là vecto trọng số liên kết giữa lớp 3 và lớp ngõ ra. Sử dụng luật suy diễn max-prod, mờ hóa singleton và giải mờ theo phương pháp trung bình trọng tâm. Mỗi một mạng singleton sử dụng 5 tập mờ với 5 hàm liên thuộc cho 1 trong 2 mạng ghép với nhau. Giải thuật thiết kế bộ điều khiển: Hình 4. Mô hình điều khiển hệ bồn nước 3. Mô phỏng kết quả nghiên cứu Với thuật toán điều khiển hệ bồn nước đôi đã nêu trên. Dùng phần mềm Matlab simulink để kiểm tra lại thuật toán điều khiển. - Sau khi xây dựng bộ điều khiển cho hệ bồn nước đôi trên phần mềm matlab simulink, ta được sơ đồ điều khiển cho đối tượng như sau: - Kết quả mô phỏng mức nước trong bồn 2 theo tín hiệu đặt sóng vuông thay đổi theo thời gian. Mức nước đặt trước [40cm,20cm]: - Kết quả mô phỏng mức nước trong bồn 2 theo tín hiệu đặt sóng vuông thay đổi theo thời gian. Mức đặt trước [20cm,15cm]: 47
  6. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 45 Tín hiệu mức nước đặt h1đ 40 35 30 25 20 Tín hiệu mức nước ngõ ra h1 15 10 5 0 0 2000 4000 6000 8000 10000 12000 Hình 5. Kết quả mô phỏng bồn 1 35 Tín hiệu mức nước đặt h2đ 30 25 20 15 Tín hiệu mức nước ngõ ra h2 10 5 0 0 2000 4000 6000 8000 10000 12000 Hình 6. Kết quả mô phỏng bồn 2 5. Kết luận và hướng phát triển - Với tín hiệu đặt là sóng vuông thì ở thời điểm đầu, hệ thống dao động và chưa xác lập nhanh được. - Các thời điểm tiếp theo tín hiệu đầu ra của đối tượng điều khiển là mức nước của cả 2 bồn bám theo tín hiệu đặt tương đối tốt. - Như vậy hệ thống điều khiển đáp ứng tốt với sự thay đổi tín hiệu đặt của mô hình đối tượng. - Kết quả nghiên cứu sẽ có tính thuyết phục và khả năng ứng dụng cao hơn nếu ta có thể xây dựng hệ thống thực nghiệm cho bài toán điều khiển này 48
  7. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 TÀI LIỆU THAM KHẢO [1] Nguyễn Như Hiền, Lại Khắc Lãi, Hệ mờ và nơron trong kỹ thuật điều khiển, Nhà xuất bản khoa học và kỹ thuật, Hà Nội -2007 [2] Huỳnh Thái Hoàng, Mô hình hóa và nhận dạng hệ thống, sách Ebook-2009, http://www.ebook4u.vn/home.htm. [3] Phan Xuân Minh, Nguyễn Doãn Phước, Lý thuyết điều khiển mờ, Nhà xuất bản khoa học và kỹ thuật, Hà Nội-2006. [4] Nguyễn Phùng Quang, Matlab & Simulink dành cho kỹ sư điều khiển tự động, Nhà xuất bản khoa học và kỹ thuật, Hà Nội-2006. [5] Phan Văn Hiền, Giáo trình MATLAB-SIMULINK, Đại học Bách khoa Đà Nẵng, Đà Nẵng-2004. [6] Teo Lian Seng, Mazuki Khalid and Rubiyah Yusof, Tuning of a neuro-fuzzy controller by genetic algorithms with an application to a coupled-tank liquid-level control system, International Joural on Engineering Applications on Artificial Intelligence, 1998. [7] Hongxing, PhiliD Ghen, Han-Pang Huang, Fuzzy-neural intelligent systems- Mathematical Foundation and the Applications in Engineering, CRC Press LLC, 2001. [8] J-S-R.JANG, C-T.SUN, E.MIZUTANI, Neuro-fuzzy anh soft computing , Prentice Hall Upper Saddle river, NJ 07458, 1997. [9] Slim labiod, Mohamed Seghir Boucherit, Thierry Marie Guerra, Adaptive fuzzy control of a class of MIMO nonlinear systems Fuzzy set and System 59-77 511, 2005. [10] L.X.Wang, Adaptive fuzzy systems control: Design and stabilty Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994. [11] Yih – Guang Leu, Tsu – Tian Lee, and Wei – Yen Wang. Observer – based adaptive fuzzy neural control for unknow nonlinear dynamical systems, 1999. [12] Guang-Minh Chen, Wei – Yen Wang, Tsu – Tian Lee, and C.W.Tao. Observer – based Direct adaptive fuzzy-neural control for Anti-lock braking systems, 1999. [13] Tao Wang and Shaocheng Tong, Adaptive fuzzy output feedback control for siso nonlinear systems, International Journal of Innovative Computing, Information and ControlVol ume 2,Number1, February 2006. 49
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
19=>1