intTypePromotion=1

Bộ đề ôn tập cuối học kì 1 môn Toán lớp 12 năm học 2020-2021

Chia sẻ: Gusulanshi Gusulanshi | Ngày: | Loại File: PDF | Số trang:194

0
63
lượt xem
2
download

Bộ đề ôn tập cuối học kì 1 môn Toán lớp 12 năm học 2020-2021

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nhằm giúp các bạn học sinh đang chuẩn bị bước vào kì thi có thêm tài liệu ôn tập, TaiLieu.VN giới thiệu đến các bạn Bộ đề ôn tập cuối học kì 1 môn Toán lớp 12 năm học 2020-2021 để ôn tập nắm vững kiến thức. Chúc các bạn đạt kết quả cao trong kì thi!

Chủ đề:
Lưu

Nội dung Text: Bộ đề ôn tập cuối học kì 1 môn Toán lớp 12 năm học 2020-2021

  1. CHINH PHỤC CUỐI KÌ I BỘ ĐỀ ÔN TẬP CUỐI KÌ 1 MÔN TOÁN – KHỐI 12 Sưu tầm và Tổng hợp: Admin: HOÀNG TUYÊN – LÊ MINH TÂM NĂM HỌC: 2020 – 2021
  2. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN MỤC LỤC 1. ĐỀ TRƯỜNG THPT TRẦN CAO VÂN ................................................................................ Trang 03. 2. ĐỀ TRƯỜNG THPT HOÀNG HOA THÁM ....................................................................... Trang 07. 3. ĐỀ TRƯỜNG THPT PHAN ĐĂNG LƯU ............................................................................. Trang 14. 4. ĐỀ TRƯỜNG THPT GIA ĐỊNH ............................................................................................. Trang 19. 5. ĐỀ TRƯỜNG THPT MARIE CURIE ..................................................................................... Trang 23. 6. ĐỀ TRƯỜNG THPT BÙI THỊ XUÂN .................................................................................... Trang 28. 7. ĐỀ TRƯỜNG THPT ERSNT THALMANN ......................................................................... Trang 33. 8. ĐỀ TRƯỜNG THPT TRƯNG VƯƠNG ................................................................................ Trang 36. 9. ĐỀ TRƯỜNG THPT NGUYỄN KHUYẾN ............................................................................ Trang 41. 10. ĐỀ TRƯỜNG THPT CHUYÊN TRẦN ĐẠI NGHĨA ....................................................... Trang 45. 11. ĐỀ TRƯỜNG THPT NGUYỄN THỊ MINH KHAI .......................................................... Trang 49. 12. ĐỀ TRƯỜNG THPT LÊ QUÝ ĐÔN ..................................................................................... Trang 53. 13. ĐỀ TRƯỜNG THPT THỦ THIÊM ....................................................................................... Trang 58. 14. ĐỀ TRƯỜNG THPT ĐỨC TRÍ .............................................................................................. Trang 62. 15. ĐỀ TRƯỜNG THPT LÊ THỊ HỒNG GẤM ....................................................................... Trang 66. 16. ĐỀ TRƯỜNG THPT HỒNG HÀ ........................................................................................... Trang 70. 17. ĐỀ TRƯỜNG THPT GÒ VẤP ............................................................................................... Trang 74. 18. ĐỀ TRƯỜNG THPT VĨNH VIỄN ........................................................................................ Trang 78. 19. ĐỀ TRƯỜNG THPT LƯƠNG THẾ VINH ......................................................................... Trang 82. 20. ĐỀ TRƯỜNG THPT VẠN HẠNH........................................................................................ Trang 86. 21. ĐỀ TRƯỜNG THPT HIỆP BÌNH .......................................................................................... Trang 89. 22. ĐỀ TRƯỜNG THPT Á CHÂU ............................................................................................... Trang 93. 23. ĐỀ TRƯỜNG THPT HERMANNGMEINER .................................................................... Trang 97. 24. ĐỀ TRƯỜNG THTH SÀI GÒN .......................................................................................... Trang 100. 25. ĐỀ TRƯỜNG THPT VÕ VĂN KIỆT ............................................................................. Trang 104. 26. ĐỀ TRƯỜNG THPT KHAI MINH ..................................................................................... Trang 108. 27. ĐỀ TRƯỜNG THPT TÂN BÌNH .................................................................................... Trang 112. 28. ĐỀ TRƯỜNG THPT NGUYỄN HỮU THỌ ..................................................................... Trang 118. 29. ĐỀ TRƯỜNG THPT DƯƠNG VĂN DƯƠNG ............................................................ Trang 122. 30. ĐỀ TRƯỜNG THPT HÙNG VƯƠNG .............................................................................. Trang 127. 31. ĐỀ TRƯỜNG THPT HÀN THUYÊN ............................................................................ Trang 131. 32. ĐỀ TRƯỜNG THPT BẮC SƠN ........................................................................................... Trang 135. 33. ĐỀ TRƯỜNG THPT AN ĐÔNG .................................................................................... Trang 139. 34. ĐỀ TRƯỜNG THPT GIỒNG ÔNG TỐ ............................................................................ Trang 144. 35. ĐỀ TRƯỜNG THPT AN DƯƠNG VƯƠNG ............................................................... Trang 148. 36. ĐỀ TRƯỜNG THPT AN LẠC .............................................................................................. Trang 152. 37. ĐỀ TRƯỜNG THPT AN NGHĨA................................................................................... Trang 156. 38. ĐỀ TRƯỜNG THPT NAM KỲ KHỞI NGHĨA ............................................................... Trang 160. 39. ĐỀ TRƯỜNG THPT LÝ THÁI TỔ ................................................................................. Trang 164. 40. ĐỀ TRƯỜNG THPT LONG TRƯỜNG ............................................................................. Trang 168. 41. ĐỀ TRƯỜNG THPT LÝ THƯỜNG KIỆT .................................................................... Trang 172. 42. ĐỀ TRƯỜNG THPT MẠC ĐĨNH CHI .............................................................................. Trang 176. 43. ĐỀ TRƯỜNG THPT NGUYỄN THỊ ĐỊNH ................................................................. Trang 180. 44. ĐỀ TRƯỜNG THPT NGUYỄN TRÃI ................................................................................ Trang 184. BẢNG ĐÁP ÁN .............................................................................................................................. Trang 188. Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 2
  3. NHÓM WORD 🙲 BIÊN SOẠN TOÁN SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ KIỂM TRA HK1 – NĂM HỌC 2019 - 2020 TP.HỒ CHÍ MINH Thời gian: 90 phút --------------------------- THPT TRẦN CAO VÂN Họ tên: ......................................................................................Lớp: .............................................. Câu 1. Cho hàm số f (x ) có đạo hàm f (x )  (x  1)2 (x  1)3 (2  x ). Hỏi hàm số f (x ) đồng biến trên khoảng nào dưới đây ? A. (; 1). B. (1;1). C. (2; ). D. (1;2). Câu 2. Cho hàm số y  f (x ) liên tục trên  với bảng xét dấu đạo hàm như sau: Hỏi hàm số y  f (x ) có bao nhiêu điểm cực trị ? A. 2. B. 1. C. 3. D. 0. Câu 3. Cho hàm số y  f (x ) có đạo hàm trên  và đồ thị hàm số y  f (x ) trên  như hình bên dưới. Tìm khẳng định đúng ? A. y  f (x ) có 1 điểm cực đại và 1 điểm cực tiểu. B. y  f (x ) có 2 điểm cực đại và 2 điểm cực tiểu. C. y  f (x ) có 1 điểm cực đại và 2 điểm cực tiểu. D. y  f (x ) có 2 điểm cực đại và 1 điểm cực tiểu. 3x  1 Câu 4. Tìm giá trị lớn nhất của hàm số y  trên đoạn [0;2]. x 3 1 1 A. max y    B. max y  5. C. max y  5. D. max y   [0;2] 3 [0;2] [ 0;2 ] [0;2] 3 Câu 5. Cho hàm số y  f (x ) liên tục trên đoạn [1; 3] và có đồ thị như hình bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [1;2]. Giá trị của M  m bằng A. 0. B. 1. C. 4. D. 5. Trang 3 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN
  4. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN x 2  2x  16  2  x Câu 6. Tìm tất cả các tiệm cận đứng của đồ thị hàm số y   x 2  3x  10 A. y  2, y  5. B. x  2. C. x  2, x  5. D. x  2, x  5. ax  b Câu 7. Đường cong của hình bên là đồ thị của hàm số y  với a, b, c, d là các số cx  d thực. Mệnh đề nào đúng ? A. y   0, x  . B. y   0, x  . C. y   0, x  1. D. y   0, x  1. Câu 8. Cho hàm số f (x ) liên tục trên  và có bảng biến thiên như sau: Tìm tất cả các giá trị của tham số thực m để phương trình f (x )  2m  1 có 3 nghiệm thực phân biệt. 1 1 A. 1  m  3. B.  m   C. 0  m  2. D. 1  m  1. 2 2 (a 3 )4 Câu 9. Cho 0  a  1. Rút gọn P  3  a .a 2 2 17 23 7 A. P  a 9 . B. P  a 2 . C. P  a 2 . D. P  a 2 .   2016 Câu 10. Tìm tập xác định D của hàm số y  x 2  3x  2 . A. D  . . B. D   \ { 1;2 }. C. D  (1;2). . D. D  (;1)  (2; ) . 2016 log 2017 Câu 11. Giá trị của M  a a2 ( 0  a  1 ) bằng A. 10082017 . B. 2017 2016 . C. 20162017 . D. 20171008 . Câu 12. Cho a , b là các số thực dương khác 1 và thỏa mãn loga b  3 . Tính giá trị của biểu 3 b thức T  log b . a a Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 4
  5. NHÓM WORD 🙲 BIÊN SOẠN TOÁN 3 A. T  1. B. T  4. C. T   . D. T  4. 4 Câu 13. Tìm giá trị nhỏ nhất của hàm số y  x ln x trên đoạn 1;2 . 2   1 1 1 A. min y   . B. min y  . C. min y   . D. min y  0. [1;2] 2e [1;2] e [1;2] e [1;2] Câu 14. Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số cho ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ? 1 x A. y  2x . B. y     C. y  log 2 x . D. y  log 1 x .  2  2   Câu 15. Phương trình log2 3x  1  4 có nghiệm là: A. x  3 . B. x  5 . C. x  5 . D. x  2 1 Câu 16. Nghiệm của bất phương trình 3x 2  là 9 A. x  4 . B. x  4 . C. x  0 . D. x  0 . Câu 17. Tìm tập nghiệm S của bất phương trình log 1 x  1  1   2  3  A. S   ;   B. S  (1; ). C. S  (;1). D. S  (1;1).  2  Câu 18. Hàm số nào sau đây đồng biến trên  ? x   A. y  log 2020 x B. y    C. y  x 4  1 D. y  log 2 x 2 e Câu 19. Đồ thị hàm số y  2 x cắt trục trung tại điểm nào dưới đây ? A. N  0; 2  B. M 1 ;1 C. K  0;1 D. H  1; 2  Câu 20. Hình chóp S .ABC có đáy ABC là tam giác vuông tại A, cạnh AB  a, BC  2a, chiều cao SA  a 6. Thể tích của khối chóp S .ABC bằng 2a 3 6a 3 2a 3 A.  B.  C.  D. 2 6a 3 . 2 3 3 Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông với đáy (ABCD). Thể tích khối chóp S .ABCD bằng a3 3 a3 3 a3 3 A.  B.  C.  D. a 3 3. 6 4 2 Trang 5 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN
  6. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN Câu 22. Cho hình chóp tam giác đều có cạnh đáy bằng a 3 và cạnh bên tạo với đáy một góc 60  . Thể tích của khối chóp đó bằng 3a 3 a3 3 a3 a3 A.  B.  C.  D.  4 12 12 4 Câu 23. Cho khối lăng trụ đứng ABC .A B C  có đáy là tam giác vuông tại A với AB  a, AC  2a 3, cạnh bên AA  2a. Thể tích khối lăng trụ bằng 2a 3 3 A. a 3 . B. a 3 3. C.  D. 2a 3 3. 3 Câu 24. Một hình nón có chiều cao h  a 3 và bán kính đáy bằng r  a . Tính diện tích xung quanh S xq của hình nón. A. S xq  2a 2 . B. S xq  3a 2 . C. S xq  a 2 . D. S xq  2a 2 . Câu 25. Một hình trụ có bán kính đường tròn đáy là r  2 a , độ dài đường sinh là l  3 a . Thể tích của hình trụ trên bằng A. V  18 a3 (đvtt). B. V  4 5 a 3 (đvtt). C. V  12 a3 (đvtt). D. V  4 a3 (đvtt). Câu 26. Cho khối cầu có bán kính bằng 2a .Thể tích của khối cầu là 32 3 16 3 A. a . B. 2a3 . C. 16 a3 . D. a . 3 3 Câu 27. Giá trị của tham số m để phương trình 9x  2m.3x  2m  0 có hai nghiệm phân biệt x 1 ; x 2 sao cho x 1  x 2   là: 9 27 3 A. m  . B. m  . C. m  3 3 . D. m   . 2 2 2 Câu 28. Cho khối lăng trụ đứng ABC .A B C  có đáy ABC là tam giác cân với AB  AC  a,   120. Mặt phẳng (AB C ) tạo với đáy một góc 60 . Thể tích của khối lăng trụ BAC đã cho bằng 3a 3 9a 3 a3 3a 3 A.  B.  C.  D.  8 8 8 4 Câu 29. Hình chóp S .ABC có M , N , P lần lượt trung điểm của SA, SB, SC . Gọi V1 là thể V1 tích khối MNP .ABC và V2 là thể tích khối S .ABC . Tỉ số bằng V2 1 7 8 A.  B. 8. C.  D.  8 8 7 Câu 30. Cho tứ diện đều ABCD có cạnh bằng 3a . Hình nón (N ) đỉnh A và đường tròn đáy là đường tròn ngoại tiếp tam giác BCD . Tính S xq của (N ). B. S xq  3 3a . D. S xq  6 3a . 2 2 A. S xq  6a 2 . C. S xq  12a 2 .  Hết  Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 6
  7. NHÓM WORD 🙲 BIÊN SOẠN TOÁN SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ KIỂM TRA HK1 – NĂM HỌC 2019 - 2020 TP.HỒ CHÍ MINH Thời gian: 90 phút --------------------------- THPT HOÀNG HOA THÁM Họ tên: ......................................................................................Lớp: .............................................. Câu 1. Cho hàm số y  f  x  có lim x 1 y   ; lim y  ; lim y  3 và lim y  4 . Hỏi đồ thị hàm số x  x  x 4 có tất cả bao nhiêu đường tiệm cận? A. 2 B. 3 C. 4 D. 1 Câu 2. Có bao nhiêu giá trị nguyên của tham số m để phương trình 4 x  6.2 x  m  0 có hai nghiệm phân biệt đều dương ? A. 5 B. 8 C. 3 D. 10 Câu 3. Từ một khối đá hình cầu bán kính 1 m , người ta có thể chế tác một tác phẩm nghệ thuật có dạng hình trụ (tham khảo hình vẽ) có thể tích lớn nhất bằng bao nhiêu? O' I O 4 3 3 2 3 3 2 3 3 4 3 3 A. m B. m C. m --------------D. m 27 9 27 9 Câu 4. Cho hàm số y  f  x  có tập xác định  ; 4  và có bảng biến thiên như hình vẽ Số điểm cực trị của hàm số đã cho là A. 4 B. 3 C. 2 D. 5 Câu 5. Quay một miếng bìa hình tròn có diện tích 16 a 2 quanh một trong những đường kính, ta được khối tròn xoay có thể tích là 64 3 128 3 256 3 32 3 A. a B. a C. a D. a 3 3 3 3 2x  5 Câu 6. Với giá trị nào của m thì đường thẳng d : y  x  m cắt đồ thị hàm số y  x1  C  tại hai điểm phân biệt A, B sao cho trung điểm của AB có tung độ bằng 1  m A. m  1 . B. m  2 . C. m  3 . D. Không tồn tại m Câu 7. Cho hình chóp đều S.ABCD có cạnh bên bằng 8, góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích hình nón có đỉnh S, đường tròn đáy ngoại tiếp ABCD. Trang 7 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN
  8. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN 64  2 64  2 64  3 64  3 A. B. C. D. 3 2 2 3 Câu 8. Tính thể tích khối chóp S.ABC biết SA   ABC , tam giác ABC vuông tại A,  BC  2AB  2a và SC,   ABC   450. a3 a3 3 3 3a 3 a3 A. V  B. V  C. V  D. V  2 2 2 6 1 Câu 9. Số nghiệm của phương trình 22x  5x 2  là: 2 16 A. 0 B. 1 C. 2 D. 3 Câu 10. Hàm số y  x .3 có bao nhiêu khoảng đồng biến ? 2 x A. 1 B. 2 C. 3 D. 0 Câu 11. Một hình trụ có diện tích xung quanh bằng 4 và có thiết diện qua trục là hình vuông. Thể tích khối trụ tương ứng bằng 2 4 2 A.  B.  C. 4 2  D. 2 3 3 Câu 12. Phương trình 6.2 2x  13.6 x  6.32x  0 có tập nghiệm là tập con của tập nào sau đây?  3   2 1  A. A   ; 1; 4; 5 B. A    ; 1; ; 2   2   3 3  C. A  4; 3;1; 0 D. A  2; 1;1; 3 1 x Câu 13. Hàm số y  ln 2 có tập xác định là x  5x  6 A.  ;1 B. 1;   C.  ;1   2; 3 D.  1; 2    3;   Câu 14. Tính thể tích khối lăng trụ đều ABC.ABC có AB  2a , AA   a 3 . 3a 3 a3 A. 3a 3 B. a 3 C. D. 4 4 Câu 15. Tìm tất cả các giá trị thực của tham số m sao cho đường thẳng y  2x  m cắt đồ thị  C  : y  2x x1 1 tại hai điểm phân biệt. A.  2  m  2 B. m   3  m  3 C. m  R D. 2 2  m  2 2 Câu 16. Tính thể tích hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy và SD tạo với mặt phẳng  SAB một góc bằng 30 0 . 6a 3 3a 3 6a 3 A. V  B. V  C. V  D. V  3a 3 3 3 18 2 1  1 1   y y Câu 17. Rút gọn K  1   x 2  y 2  1  2   ta được:  x x     A. x  1 B. x  1 C. x D. 2x Câu 18. Tổng tất cả các nghiệm của phương trình log 2  x  1  log 2 x  1  log 2  3x  5  bằng A. 7 B. 4 C. 6 D. 5 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 8
  9. NHÓM WORD 🙲 BIÊN SOẠN TOÁN Câu 19. Thiết diện qua trục của một hình nón  N  là một tam giác vuông cân và có diện tích bằng a 2 . Tính thể tích V của khối nón  N  . 4 a 3 a 3 2 a 3 a3 A. V  . B. V  . C. V  . D. V  2 3 3 3 Câu 20. Tìm giá trị lớn nhất của hàm số y  x2  2x A. 1 B. 2 C. 0 D. 3 Câu 21. Hình bên là đồ thị của hàm số nào sau đây? y -1 O 1 x -1 A. y   x 4  2x 2 B. y   x 2  2x  1 C. y   x 4  2x 2  1 D. y   x 4  2x 2  1 Câu 22. Thiết diện qua trục của một hình trụ là hình vuông có cạnh bằng a . Tính thể tích của khối trụ đó. a 3 a 3 a 3 A. V  B. V  C. V  a 3 D. V  4 12 3 Câu 23. Cho hàm số y  x 3  3x 2  2 có đồ thị  C  . Đường thẳng (d) : y  2  2x cắt đồ thị tại các điểm có hoành độ x 1 , x 2 , x 3 . Tính tổng x 1  x 2  x 3 . A. 1 B. –3 C. 3 D. 0 Câu 24. Cho tứ diện SABC, đáy ABC là tam giác vuông tại B với AB = 3, BC = 4. Hai mặt bên (SAB) và (SAC) cùng vuông góc với (ABC) và SC hợp với (ABC) góc 45˚. Thể tích hình cầu ngoại tiếp SABC là: 5 2 25 2 125 2 125  3 A. V = B. V = C. V = D. V = 3 3 3 3 Câu 25. Nghiệm của phương trình log 2  log 4 x   1 thuộc đoạn nào sau đây? A. [12;16] B. [2; 4] C. [8;10] D. [5; 6] Câu 26. Tính thể tích hình hộp đứng ABCD.A' B'C' D' có đáy ABCD là hình thoi cạnh a,   60 0 và AB’ hợp với đáy (ABCD) một góc 30 0 . BAD a3 2 a3 a3 3a 3 A. B. C. D. 6 2 6 2 Câu 27. Có bao nhiêu giá trị nguyên của tham số m để phương trình x 3  3x  m  2  0 có 3 nghiệm phân biệt. A. 1 B. 2 C. vô số D. 3 Câu 28. Cho hình lăng trụ xiên ABC.A’B’C’ đáy là tam giác đều cạnh 2a, hình chiếu vuông góc của A’ lên đáy trùng với tâm đường tròn ngoại tiếp tam giác ABC và A’A hợp với đáy một góc bằng 600. Thể tích của lăng trụ bằng 3a 3 3 3a 3 A. 3 3a 3 B. 2 3a 3 C. D. 4 4 Trang 9 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN
  10. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN Câu 29. Cho hàm số y  25  x2 . Mệnh đề nào sau đây là đúng ? A. Hàm số nghịch biến trên khoảng  ; 0  , đồng biến trên khoảng  0;    . B. Hàm số nghịch biến trên khoảng  5;0  , đồng biến trên khoảng  0; 5 . C. Hàm số đồng biến trên khoảng  ; 0  , nghịch biến trên khoảng  0;    . D. Hàm số đồng biến trên khoảng  5; 0  , nghịch biến trên khoảng  0; 5 . Câu 30. Cho hàm số y  x 4  2mx 2  2 . Xác định m để đồ thị hàm số có ba điểm cực trị lập thành một tam giác vuông cân. A. m  0 B. m  1 C. m  0  m  1 D. m  1  Hết  Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 10
  11. NHÓM WORD 🙲 BIÊN SOẠN TOÁN SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ KIỂM TRA HK1 – NĂM HỌC 2019 - 2020 TP.HỒ CHÍ MINH Thời gian: 90 phút --------------------------- THPT VÕ THỊ SÁU Họ tên: ......................................................................................Lớp: .............................................. Câu 1. Thể tích khối chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a bằng a3 3 a3 2 a3 3 a3 2 A. B. C. D. 3 3 6 6 2x  4 Câu 2. M,N lần lượt là giao điểm của đồ thị hàm số y  với đường thẳng y  x  1 .Khi x 1 đó hoành độ trung điểm I của đoạn thẳng MN bằng A. 2 B. 1 C. 2 D. 1 Câu 3. x0 là nghiệm của phương trình: 16 x  32  0 .Tính 16 x0 1 . 2 2 2 1 1  18.4 x A. 32 B. 64 . C. 256 . D. 16 . Câu 4. Gọi M  a ; b  là giao điểm của hai đồ thị hàm số y  x  3 x  4 và y  2 x 2  2 . Tính 4 2 giá trị của T  a 2  b . A. T  1 B. T  5 . C. T  3 . D. T  7 . Câu 5. x  2 là tiệm cận đứng của đồ thị hàm số nào dưới đây x2 x5 B. y   x  2  . C. y   x  2  . 1 1 A. y  2 . D. y  . x 4 x2 ln  ln10  Câu 6. Biết a  . Giá trị của 10 a bằng ln10 A. 2. B. ln10. C. 4  D. e. Câu 7. Tìm tất cả các giá trị của m để đồ thị hàm số y   m  2  x có tiệm cận ngang là y 1 2x  m A. m  2 B. m  C. m  0 D. m  1 Câu 8. Tìm điểm cực đại của đồ thị hàm số y  x  2 x  x  1 . 3 2  1 31  A.  0 ;1 B.  1;  5 C. 1;1 D.  ;   3 27  x 2 x Câu 9. Tìm khoảng nghịch biến của hàm số y   2 8 2 A. 1; 3  B.  0;2 C.  2;    D.   ; 0  Câu 10. Cho ba số thực dương a,b,c khác 1 có đồ thị (hình vẽ).Mệnh đề nào sau đây đúng A. a  c  b . B. a  b  c . C. c  a  b . D. c  b  a . Trang 11 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN
  12. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN Câu 11. Hình trụ có bán kính đáy R,chiều cao h.Biết diện tích toàn phàn gấp đôi diện tích xung quanh .Mệnh đề nào sau đây đúng A. h  R 2 B. R  2h C. h  R D. h  2 R 1 1 Câu 12. Giải phương trình : 3.4 x  .9 x  2  6.4 x  .9 x 1 3 4 2 4 A. x   14 B. x  2 C. x  log 3 D. x  log 3 5 2 39 2 39 2 3 Câu 13. Nghiệm dương của phương trình : 2 x 2 x  là 2 A. x  1  log 2 3 B. x  log2 3 C. x  1  3 D. x  2 Câu 14. Giá trị lớn nhất của hàm số f  x   3x trên đoạn  2; log 3 7  bằng 1 A. 7 B. 9 C. D. 2 9 Câu 15. Trong hệ tọa độ Oxy, M  x ; y  là điểm thuộc đường tròn tâm O bán kính R  3 . a,b là     các số thực thỏa a  log 2 x 2  4 , b  log3 y 2  3 . Giá trị của T  2 a  3b bằng A. 16 . B. 10 . C. 3 . D. 4 . Câu 16. Thể tích khối nón có độ dài đường sinh l  a 2 ,bán kính đáy r  a bằng  a3  a3 2 A.  a 3 B.  a 2 2 C. D. 3 3 2 3 Câu 17. Tìm giá trị thực của m để hàm số y  x   m  5  x   6 m  12  x  1 có cực tiểu x  5 2 3 A. m  1 B. m  3 C. m  1 D. m  3 Câu 18. Khối chóp S.ABCD có ABCD là hình bình hành tâm O có thể tích bằng V. Biết G là trọng tâm tam giác SCD. Thể tích khối chóp G.OCD bằng V V V V A. . B. . C. . D. . 36 12 6 24 x4 Câu 19. Cho hàm số f  x   log a x4    ; a  0 , a  1 . Biết f b 2  5  10 ; b   . Tính f b2  5   A. f b 2  5  10 . B. f  b  5   b  10 . 2 2 C. f  b 2  5  0 . D. f  b  5   b  10 . 2 2 Câu 20. Tìm giá trị nhỏ nhất của hàm số y  x  x 1 2 A.  . B. 2 C. 0 . D.  . 4 9 Câu 21. Một hình nón có bán kính đáy R, góc ở đỉnh bằng 60 . Một thiết diện qua đỉnh nón 0 chắn trên đáy một dây cung có độ dài R 2 .Diện tích thiết diện bằng R2 7 R2 6 R 2 15 3R 2 A. . B. . C. . D. . 2 2 6 2 Câu 22. Cho hình lập phương ABCD.A’B’C’D’ tâm O cạnh a .Khoảng cách từ điểm O đến mặt phẳng  ABCD  bằng a 3 a 2 A. . B. . C. a 2 . D. 0 . 2 2 Câu 23. Tìm giá trị thực của m để đồ thị hàm số y  x 4  2  m  3  x 2  2 m có ba điểm cực trị là ba đỉnh của tam giác vuông cân Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 12
  13. NHÓM WORD 🙲 BIÊN SOẠN TOÁN A. m  4 B. m  3 . C. m  . D. m  5 . Câu 24. Cho tứ diện OABC có OA,OB, OC đôi một vuông góc và OA = OB =OC .Gọi M là trung điểm BC. Góc giữa hai đường thẳng OM và AB bằng A. 60 . B. 30 . C. 90 . D. 75 Câu 25. Đồ thị hàm số y  x  3 x  m cắt đường thẳng y  2 x  3 tại ba điểm A,B,C thỏa 3 2 điều kiện AB=BC . Giá trị m thuộc tập hợp nào sau đây A. 1; 2 B. 3;  2 C. 6;  1 D. 2;3 Câu 26. Cho tam giác ABC vuông tại A có AB=8,AC=6. Tính diện tích xung quanh hình nón tạo bởi tam giác ABC khi quay quanh cạnh AC A. 60 B. 80 C. 48 D. 64 Câu 27. Hàm số nào có đồ thị đối xứng với đồ thị hàm số : y  log 2 x qua đường thẳng y  x . A. y  x 2 B. y  2x C. y  log 1 x D. y  2 x 2 Câu 28. Phương trình: 9 x2  2 x  m 3 3x2  2 m 3 x2 4 x 3  1 có 4 nghiệm phân biệt .Có bao nhiêu giá trị nguyên của tham số m   4; 4  A. 5 . B. 7 . C. 3 . D. 4 . Câu 29. Cho lăng trụ tam giác đều ABC.A’B’C’ có AB  3 cm, góc tạo bới AB / và BC / bằng 90 0 . / Tính chiều cao hình lăng trụ. 2 3 A. 3 . B. . C. 2 . D. 2 . 3 Câu 30. Hình trụ ngoại tiếp hình lập phương cạnh a. Diện tích xung quanh hình trụ bằng  a2 2 A.  a 2 2 B. C. a 2 2 D.  a 2 2  Hết  Trang 13 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN
  14. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ KIỂM TRA HK1 – NĂM HỌC 2019 - 2020 TP.HỒ CHÍ MINH Thời gian: 90 phút --------------------------- THPT PHAN ĐĂNG LƯU Họ tên: ......................................................................................Lớp: .............................................. A. TRẮC NGHIỆM. Câu 1. Tính thể tích V của khối trụ có bán kính đáy r  2 và chiều cao h  2 2 . 8 2 A. V  16 . B. V  8 2 . C. V  . D. V  16 2 . 3 Câu 2. Cho hình chóp S . ABCD có đáy ABCD là hình chữ nhật, AB  2a , AD  3a , SA  5a và SA vuông góc mặt phẳng đáy  ABCD  . Tính bán kính R của mặt cầu ngoại tiếp hình chóp S . ABCD . 7a A. R  3a . B. R  5a . C. R  . D. R  a . 2 Câu 3. Nghiệm của phương trình 3x1  2 là A. x  1  log 2 3 . B. x  1  log3 2 . C. x  1  log3 2 . D. x  1  log 2 3 . Câu 4. Tính đạo hàm của hàm số y  log3 x . 1 1 x A. y   . B. y  . C. y  x.ln 3 . D. y  . x x ln 3 ln 3 x2 Câu 5. Tìm giá trị nhỏ nhất m của hàm số y  trên đoạn  0;5 . x3 2 8 7 A. m  2 . B. m  . C. m  . D. m  . 3 9 8 Câu 6. Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây? Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 14
  15. NHÓM WORD 🙲 BIÊN SOẠN TOÁN A. y  x 4  2 x2 . B. y  x 4  2 x2  3 . C. y   x 4  2 x 2  3 . D. y  x3  3x  3 . Câu 7. Thể tích V của khối nón có chiều cao h và bán kính đáy r là 1 4 A. V  3 r 2 h . B. V   r 2 h . C. V   r 2 h . D. V   r 2 h . 3 3 Câu 8. Tính thể tích V của khối chóp S . ABC có đáy ABC là tam giác đều, AB  a , SA vuông góc mặt phẳng đáy và SA  3a . 3a 3 3a 3 a3 A. V  . B. V  . C. V  . D. V  3a3 . 3 4 4 Câu 9. Cho khối lăng trụ đứng ABC . AB C  có AA  4a , đáy ABC là tam giác vuông cân tại A với AB  AC  2a . Tính thể tích V của khối lăng trụ ABC. AB C  . 8a 3 16a 3 A. V  16a3 . B. V  8a3 . C. V  . D. V  . 3 3 4x  5 Câu 10. Tìm phương trình đường tiệm cận đứng của đồ thị hàm số y  . 2x  3 3 A. x  . B. x  2 . C. x  4 . D. x  3 . 2 1 Câu 11. Tìm tập xác định D của hàm số y   2 x  1 3 . Trang 15 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN
  16. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN 1  1  1  A. D   ;   . B. D   . C. D   \   . D. D   ;   . 2  2 2  Câu 12. Cho hàm số y  f  x  có bảng biến thiên như sau Hàm số đã cho có bao nhiêu điểm cực tiểu? A. 0 . B. 3 . C. 1. D. 2 . x9 Câu 13. Tìm tất cả các giá trị thực của tham số m để hàm số y  đồng biến trên khoảng xm   ;5 . A. 5  m  9 . B. 5  m  9 . C. m  9 . D. m  9 . Câu 14. Trong các hàm số dưới đây, hàm số nào đồng biến trên khoảng  0;    ? x 2 A. y    . B. y   x 4  2 x 2  1. C. y  log5 x . D. y   x3  3x  2 . 3 Câu 15. Nghiệm của phương trình log3  x  2   2 là A. x  5 . B. x  6 . C. x  7 . D. x  4 . Câu 16. Tập xác định của hàm số y   x  7  3 là A.  \ 7 . B.  7;   . C.  . D.    ;7  . Câu 17. Diện tích S của mặt cầu có bán kính R là 4 A. S   R 2 . B. S   R 2 . C. S  2 R2 . D. S  4 R2 . 3 Câu 18. Tìm tất cả giá trị của tham số m để phương trình x3  3x 2  4  m  0 có 3 nghiệm phân biệt. Biết rằng đồ thị của hàm số y  x3  3x2  4 có hình vẽ như hình bên dưới. A. 0  m  4 . B. 0  m  4 . C. m  0 hay m  4 . D. m  0 hay m  4 . 1 Câu 19. Viết biểu thức P  x 2 6 x với x  0 dưới dạng lũy thừa với số mũ hữu tỉ. Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 16
  17. NHÓM WORD 🙲 BIÊN SOẠN TOÁN 2 13 1 A. P  x .3 B. P  x . 2 C. P  x .3 D. P  x .9 Câu 20. Cho log a b  2 , loga c  3 . Tính Q  log a  b 2 .c  . A. Q  12 . B. Q  4 . C. Q  7 . D. Q  10 . Câu 21. Biết rằng phương trình log 2 3 x  2 log 3 x  4  0 có 2 nghiệm là m và n . Hãy chọn khẳng định đúng. 1 A. m.n  9 . B. m.n  . C. m.n  4 . D. m.n  0 . 9 Câu 22. Một người gửi 300 triệu đồng vào một ngân hàng với lãi suất 6% /năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm, người đó nhận được số tiền hơn 600 triệu đồng bao gồm gốc và lãi? Giả định trong suốt thời gian gửi, lãi suất không đổi và người đó không rút tiền ra. A. 14 năm. B. 11 năm. C. 12 năm. D. 13 năm. Câu 23. Mặt phẳng đi qua trục của một hình trụ, cắt hình trụ này theo thiết diện là hình vuông cạnh bằng a . Tính thể tích V của hình trụ đã cho.  a3  a3  a3 A. V  . B. V   a3 . C. V  . D. V  . 4 3 12 Câu 24. Trong không gian, cho tam giác ABC vuông tại A với AB  6 , AC  4 . Tính thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AB . A. V  32 . B. V  48 . C. V  144 . D. V  96 . Câu 25. Tìm giá trị lớn nhất M của hàm số f  x   x.ln x trên đoạn 1; e  1 A. M  1 . B. M  e2 . C. M  . D. M  e . e Câu 26. Cho hình chóp S . ABCD có đáy ABCD là hình vuông tâm O , cạnh AB  a , SA vuông góc mặt phẳng đáy  ABCD  . Khoảng cách từ điểm O đến mặt phẳng  SBC  bằng a 3 . Tính thể tích V của khối chóp S . ABCD . 4 3a 3 39a 3 39a 3 A. V  . B. V  . C. V  . D. V  3a3 . 3 3 9 Câu 27. Cho log 5  m , tính log16 theo m . Trang 17 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN
  18. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN A. log16  4  m . B. log16  4 1  m  . C. log16  4 1  m  . D. log16  4  m . 3  x2  4 Câu 28. Đồ thị của hàm số y  có bao nhiêu đường tiệm cận ? x2  5x A. 1. B. 3 . C. 2 . D. 4 . Câu 29. Trong các hàm số sau đây, hàm số nào có 2 điểm cực trị? A. y  x3  3x 2  2019 . B. y  x 4  8x 2  10 . C. y   x 4  4 x 2  5 . D. y  x3  3x  2019 . Câu 30. Cho hình chóp S . ABCD có đáy ABCD là hình thang vuông tại A và B , biết AB  SD  3a , AD  SB  4a , đường chéo AC vuông góc với mặt phẳng  SBD  . Tính theo a thể tích V của khối chóp S . ABCD . 9a 3 15a 3 A. V  15a3 . B. V  . C. V  9a3 . D. V  . 2 2  Hết  Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 18
  19. NHÓM WORD 🙲 BIÊN SOẠN TOÁN SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ KIỂM TRA HK1 – NĂM HỌC 2019 - 2020 TP.HỒ CHÍ MINH Thời gian: 90 phút --------------------------- THPT GIA ĐỊNH Họ tên: ......................................................................................Lớp: .............................................. x2  3 Câu 1. Tìm giá trị nhỏ nhất của hàm số y  trên đoạn 2;4  . x 1 19 A. min y  3. B. min y  . C. min y  2. D. min y  6. 2;4  2;4  3 2;4  2;4  Câu 2.  x x Gọi x1 , x 2 là hai nghiệm của phương trình log3 5.3x  6  2x . Tính S  9 1  9 2  A. S  12. B. S  9. C. S  13. D. S  5. Câu 3. Hàm số nào sau đây đồng biến trên khoảng ( ; ) x  19 A. y  . B. y   x 3  3x . x  20 x  19 C. y  x 3  20x  2019 . D. y  . x  20 Câu 4. Nếu tăng tất cả các cạnh của một khối lập phương lên 3cm thì thể tích của khối lập phương tăng lên 279cm3 . Diện tích toàn phần của hình lập phương là A. 16. B. 96. C. 49. D. 294. Câu 5. Trong không gian cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Tính thể tích V của khối cầu ngoại tiếp khối chóp S.ABCD. a3 3a3 2a3 A. V  . B. V  . C. V  . D. V  2a2 . 6 2 3 Câu 6. Cho hình chóp S.ABC có SA,SB,SC đôi một vuông góc và có AB  5, BC  13, CA  10 . Thể tích khối chóp S.ABC là A. 10 . B. 5 . C. 2 . D. 1 . Câu 7. Tập nghiệm của bất phương trình log1 x 2  3x  2  1 là   2 A. 0;2    3;7  . B. 0;1   2;3 . C.  ;1 . D. 0;3 .     x x Câu 8. Giải bất phương trình sau 3 8  3 8  34 . Trang 19 Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN
  20. CHINH PHỤC CUỐI KÌ 1 CÙNG NHÓM WORD 🙲 BIÊN SOẠN TOÁN A. 4  x  4 . B. 8  x  8 . C. 2  x  2 . D. 6  x  6 . Câu 9.   600. Quay tam giác ABC quanh Cho tam giác ABC vuông tại A, có AB  a, ABC trục AC, đường gấp khúc CBA tạo ra một hình nón tròn xoay. Tính diện tích toàn phần của hình nón đó. A. 2 3a2. B. 3a2. C. 2a2.  D. 3  2 3 a2  2x  4 Câu 10. Gọi M,N là hai giao điểm của đường thẳng d : y  x  1 và đồ thị  C  : y  . x 1 Hoành độ trung điểm I của MN là 5 5 A. 1. B.  . C. . D. 2. 2 2 Câu 11. Tiếp tuyến của đồ thị hàm số y  x 3  3x 2  2 tại điểm A  1; 2 là A. y  24x  2 . B. y  9x  7 . C. y  9x  2 . D. y  24x  7 . Câu 12. Tính đạo hàm của hàm số y  19 x . 19 x ln19 A. y '  x.19 x 1 . B. y '  19 x ln19 . C. y '  . D. y '  . ln19 19 x Câu 13. Cho hàm số y  x 3  3x 2  1 . Viết phương trình tiếp tuyến với đồ thị hàm số biết rằng tiếp tuyến có hệ số góc nhỏ nhất. A. y  3x. B. y  3x  6. C. y  3x  6. D. y  3x  3. mx  5 Câu 14. Tìm m để hàm số f  x   đạt giá trị nhỏ nhất trên đoạn 0;1 bằng 7. x m A. m  0 . B. m  1 . C. m  2 . D. m  5 . x6 Câu 15. Có bao nhiêu giá trị nguyên của tham số m để hàm số y  nghịch biến trên x  5m khoảng 10;  . A. 4 . B. Vô số. C. 5 . D. 3 . Câu 16. Cho hình chóp đều S.ABCD có cạnh bên SB  a 3; góc giữa mặt bên và đáy bằng 450 . Tính thể tích khối chóp S.ABCD . Sưu Tầm & Biên Soạn: LÊ MINH TÂM – HOÀNG TUYÊN Trang 20
ADSENSE
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2