intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Các bài toán giải hình cầu trong hình học giải tích không gian (Bài tập và hướng dẫn giải)

Chia sẻ: T N | Ngày: | Loại File: DOC | Số trang:9

256
lượt xem
116
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'các bài toán giải hình cầu trong hình học giải tích không gian (bài tập và hướng dẫn giải)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Các bài toán giải hình cầu trong hình học giải tích không gian (Bài tập và hướng dẫn giải)

  1. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 10-03 Hình cầu Trong HHGT không gian. Bài 1: Trong hệ trục tọa độ Oxyz cho mp (α ) :2 x + y − 2 z + 15 = 0 và điểm J(-1;-2;1). Gọi I là điểm đối xứng của J qua (α ) . Viết phương trình mặt cầu tâm I, biết nó cắt (α ) theo một đường tròn có chu vi là 8π. Bài 2: Tìm tập hợp tâm các mặt cầu đi qua gốc tọa độ và tiếp xúc với 2 mặt phẳng có phương trình lần lượt là: (P): x+2y-4=0 và (Q): x+2y+6=0 Bài 3: Trong KG cho mặt cầu (S) đi qua 4 điểm: A(0;0;1), B(1;0;0), C(1;1;1), D(0;1;0) 1 1 1 Và mặt cầu (S’) đi qua 4 điểm: A '( ;0;0), B '(0; ; ), C '(1;1;0), D '(0;1;1) . 2 2 2 Tìm độ dài bán kính đường tròn giao tuyến của 2 mặt cầu đó. Bài 4: Trong hệ trục TĐ Oxyz cho 2 đường thẳng có PT: x = t  x = 5 − 2s   ( d1 ) :  y = −t và ( d 2 ) :  y = −2 z = 0 z = s   Viết phương trình mặt cầu (S) có tâm I thuộc d1 và I cách d2 một khoảng bằng 3. Biết rằng mặt cầu (S) có bán kính bằng 5. Bài 5: Trong hệ trục TĐ Oxyz cho 2 điểm: A(0;-1;1) và B( 1;2;1) . Viết PT mặt cầu (S) có đường kính là đoạn vuông góc chung của đường thẳng AD và đường thẳng chứ trục Ox. ………………….Hết………………… BT Viên môn Toán hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt 1
  2. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Trịnh Hào Quang Page 2 of 9
  3. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HƯỚNG DẪN GIẢI BTVN BG SỐ 6 Hình Cầu. • NGÀY 12.03 Bài 1: Cho tứ diện ABCD có AB=CD=c; AC=BD=b; AD=BC=c. Tính diện tích mặt cầu ngoại tiếp tứ diện. Giải: Gọi M, N lần lượt là trung điểm của BC và AD. Vì ∆ABC = ∆DBC ⇒ AM = DM ⇒ MN ⊥ AD . Tương tự: MN ⊥ BC Vậy MN là đoạn vuông góc chung của AD và BC. Hay MN là đường trung trực của AD và BC.  Tâm mặt cầu ngoại tiếp tứ diện sẽ là trung điểm của MN. b2 + c2 a 2 b2 + c2 − a 2 Ta có: AM = DM = − ⇒ MN = AM 2 − AN 2 = 2 4 2 MN 2 1 a 2 + b 2 + c 2 ⇒ R = OA = AN + ( 2 ) = 2 2 2 Vậy: 1 a2 + b2 + c2 π 2 S = 4π R = 4π . . 2 = (a + b 2 + c 2 ) 4 2 2 Bài 2: Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đáy và cạnh bên đều bằng a. Gọi A’, B’, C’, D’lần lượt là trung điểm của SA,SB,SC,SD. a) CMR: Các điểm A,B,C,D,A’,B’,C’,D’ cùng thuộc một mặt cầu (C). b) Tính bán kính mặt cầu này. Giải: a) Gọi O, O’ lần lượt là tâm các hình vuông ABCD, A’B’C’D’. Khi đó OO ' ⊥ ( ABCD) và OO ' ⊥ ( A ' B ' C ' D ') và OO’ là trục đường tròn ngoại tiếp các Page 3 of 9
  4. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 hình vuông ấy. ⇒ Tâm I của hình cầu cần tìm thuộc OO’ và nằm ngoài OO’. Đặt: a 2 2 a 2 2 OI = x. Do IA2 = IA '2 ⇒ OI 2 + OA2 = OI '2 + OA '2 ⇔ x 2 + ( ) =( ) + ( x + OO ') 2 ; 2 4 SO a 2 a 2 OO ' = = ⇒x= 2 4 4 Vậy 8 điểm A,B,C,D, A’,B’,C’,D’ cùng thuộc mặt cầu tâm I. a 2 a 2 a 10 b) Bán kính : R = IA = + = 8 2 4 Bài 3: Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, hai mặt bên (SAB) và (SAD) cung vuông góc với đáy, SA=a. Tính bán kính hình cầu nội tiếp hình chóp. Giải: ( SAB) ⊥ ( ABCD)   Vì ( SAB) ∩ ( ABCD) = AB  ⇒ AD ⊥ SA . Tương tự AB ⊥ SA . AD ⊥ AB   Ta hoàn toàn chứng minh được SB ⊥ BC và SD ⊥ DC a2 a2 a2 2 a2 2 ⇒ S = S ∆SAB + S ∆SAD + S ∆SBC + S ∆SCD + S WABCD = + + + + a2 TP 2 2 2 2 = (2 + 2)a 2 1 1 a3 V = SA.S W Mà chóp 3 ABCD = .a.a2 = r= 3V ⇒r= a(2 − 2) 3 3 và STP 2 Bài 4: Cho tứ diện ABCD có 4 chiều cao kẽ từ 4 đỉnh lần lượt là h 1, h2 ,h3 ,h4 . Gọi r là bán kính hình cầu nội tiếp tứ diện. Page 4 of 9
  5. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 1 1 1 1 1 CMR: + + + = h1 h2 h3 h4 r Giải: Gọi diện tích các mặt đối diện với các đỉnh lần lượt là S1,S2,S3,S4 ta có: 1 1 1 1 3V 3V 3V 3V V = h1S1 = h2 S2 = h3 S3 = h4 S4 ⇒ h1 = ; h2 = ; h3 = ; h4 = 3 3 3 3 S1 S2 S3 S4 1 1 1 1 S1 + S2 + S3 + S 4 STP 1 ⇒ + + + = = = h1 h2 h3 h4 3V 3V r Bài 5: Cho tam giacs cân ABC có ∠BAC = 1200 và đường cao AH = a 2 . Trên đường thẳng ∆ vuông góc với (ABC) tại A lấy 2 điểm I,J ở 2 bên điểm A sao cho: IBC là tam giác đều, JBC là tam giác vuông cân. a) Tính các cạnh của ∆ ABC. b) Tính AI, AJ và chứng minh các tam giác BIJ và CIJ là các tam giác vuông. c) Tìm tâm và bán kính mặt cầu ngoại tiếp tứ diện IJBC, IABC. Giải: a) Các bạn tự tính ra ta được: AB = AC = 2a 2; BC = 2a 6 b) Các bạn sẽ tính được AI=4a và AJ=6a. Ta thấy IJ=AI+AJ=2a+4a=6a và IB2 + JB2 =24a2+12a2 = 36a2. Điều này chứng tỏ tam giác BIJ vuông tại B, tương tự ta cũng chứng minh được tam giác CIJ vuông tại C. c) Ta có: ∠IBJ = ∠ICJ = 900 Điều này chứng tỏ B,C nằm trên mặt cầu đường kính IJ 6a IJ, bán kính R1 = = = 3a . 2 2 Vì tam giác ABC cân tại A nên đường cao Ah cũng là đường trung trực. ⇒ Tâm A’ của đường tròn ngoại tiếp tam giác ABC nằm trên AH. BC Định lý hàm số sin cho ta: = 2 R ⇒ R = 2a 2 = 2 AH nên A’ đối xứng với A qua sin A BC. Page 5 of 9
  6. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Gọi K là trung điểm của AI, Tâm L của mặt cầu ngoại tiếp tứ diện IABC là giao điểm của trục A’x của đường tròn ngoại tiếp tam giác ABC và trung trực của đoạn Az nằm trong mp (AIH). Bán kính mặt cầu đó là: AI 2 R2 = LA = AK + LK = 2 2 + 4 AH 2 = 4a 2 + 8a 2 = 2a 3 4 • NGÀY 10.03 Bài 1: Trong hệ trục tọa độ Oxyz cho mp (α ) :2 x + y − 2 z + 15 = 0 và điểm J(-1;-2;1). Gọi I là điểm đối xứng của J qua (α ) . Viết phương trình mặt cầu tâm I, biết nó cắt (α ) theo một đường tròn có chu vi là 8π. Giải: Gọi I(a;b;c) ta có: ur ur r a + 1 b + 2 c − 1  a = 2b + 3 IJ = (a + 1; b + 2; c − 1). Do IJ ↑↑ n (α ) ⇒ = = ⇒ 2 1 −2 c = −2b − 3 Nhưng trung điểm M của IJ lại nằm trên (α ) nên ta có : b= -4 và I (-5;-4;5) Ta tính được khoảng cách từ I đến (α ) là IO’=3. Vì C=2πR0=8π nên R0=4 . => R = IA IO '2 + AO '2 = 42 + 32 = 5 Vậy: (C ) :( x + 5) 2 + ( y + 4) 2 + ( z − 5) 2 = 25 Bài 2: Tìm tập hợp tâm các mặt cầu đi qua gốc tọa độ và tiếp xúc với 2 mặt phẳng có phương trình lần lượt là: (P): x+2y-4=0 và (Q): x+2y+6=0 Giải: Ta nhận thấy (P) song song với (Q) nên 2R= d( (P), (Q)). Lấy M(0;2;0) thuộc (P) ta có: d( (P), (Q))= d( M, (Q)) = 2 5 ⇒ R = 5 . Lúc này PT mặt cầu có dạng: (x-a)2+(y-b)2+(z-c)2=5 Vì C đi qua O(0;0;0) nên: a 2 + b 2 + c 2 = 5 ⇒ I ∈ ( S ) : x 2 + y 2 + z 2 = 5 Page 6 of 9
  7. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Mặt khác: Mặt phẳng song song và cách đều (P) và (Q) có PT: ( x + 2 y − 4) + ( x + 2 y + 6) (α): = x + 2 y +1 = 0 2  I ∈ (α ) x + 2 y +1 = 0 Do  ⇒ I ∈ (α ) ∩ ( S ) :  2 ( Cố định )  I ∈ (S ) x + y + z = 5 2 2 Bài 3: Trong KG cho mặt cầu (S) đi qua 4 điểm: A(0;0;1), B(1;0;0), C(1;1;1), D(0;1;0) 1 1 1 Và mặt cầu (S’) đi qua 4 điểm: A '( ; 0; 0), B '(0; ; ), C '(1;1; 0), D '(0;1;1) . 2 2 2 Tìm độ dài bán kính đường tròn giao tuyến của 2 mặt cầu đó. Giải: Lần lượt ta lập các PT mặt cầu với dạng tổng quát chung là: x 2 + y 2 + z 2 + 2ax + 2by + 2cz + d = 0 • Với (S) ta có: 1 + 2c + d = 0 1 + 2a + d = 0  1  ⇒ a = b = c = − ; d = 0 ⇒ x 2 + y 2 + z 2 − x − y − z = 0(1) 1 + 2b + d = 0 2 3 + 2a + 2b + 2c + d = 0  1 4 + a + d = 0  1 7 1 7 1 7 • Với (S’)  + b + c + d = 0 ⇒ a = c = ; b = ; d = −2 ⇒ x + y + z + x − y + z − 2 = 0(2) 2 2 2 2 4 4 2 2 2  2 + 2a + 2b + d = 0 2 + 2b + 2c + d = 0  Từ (1) và (2) ta thấy mặt phẳng chứa đường tròn giao tuyến có PT: (α ) : 9 x + y + 9 z − 4 = 0 Vậy PT đường tròn giao tuyến cần tìm là:  9x + y + 9z − 4 = 0  (C ) :  1 2 1 2 1 2 3 ( x − 2 ) + ( y − 2 ) + ( z − 2 ) = 4  Page 7 of 9
  8. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Bài 4: Trong hệ trục TĐ Oxyz cho 2 đường thẳng có PT: x = t  x = 5 − 2s   ( d1 ) :  y = −t và (d 2 ) :  y = −2 z = 0 z = s   Viết phương trình mặt cầu (S) có tâm I thuộc d1 và I cách d2 một khoảng bằng 3. Biết rằng mặt cầu (S) có bán kính bằng 5. Giải: Vì I thuộc d1 nên I( t;-t;0) r r uuu r u d = (−2; 0;1) uuu r u.IM     (d 2 ) có  2 ⇒ IM = (5 − t ; t − 2; 0) ⇒ d ( I → d 2 ) = r Qua M (5; −2;0)  u r uuur 6t 2 − 30t + 45 u.IM  = (−t + 2;5 − t ; −2t + 4) ⇒ d ( I → d 2 ) = =3   5 t = 0 ⇒ I (0;0;0) ⇒ t = 5 ⇒ I (5; −5;0) Vậy có 2 PT mặt cầu thõa mãn đk bài toán là: ( S1 ) : x 2 + y 2 + z 2 = 25 ( S 2 ) : ( x − 5) 2 + ( y + 5) 2 + z 2 = 25 Bài 5: Trong hệ trục TĐ Oxyz cho 2 điểm: A(0;-1;1) và B( 1;2;1) . Viết PT mặt cầu (S) có đường kính là đoạn vuông góc chung của đường thẳng AD và đường thẳng chứ trục Ox. Giải: Lập PT đường thẳng đi qua AB ta có: x = t  ( AB) :  y = −1 + 3t Gọi M (t ;3t − 1;1) ∈ ( AB ) z = 1  Page 8 of 9
  9. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 uuuu r Và N(s;0s0) thuộc Ox ⇒ MN = (t − s;3t − 1;1) .  MN ⊥ AB 1 Sử dụng :  Ta tìm được t = s = .  MN ⊥ Ox 3 1 1 1 1 Ta tìm được : M ( ; 0;1) , N ( ; 0; 0) ⇒ O( ; 0; ) là trung điểm của MN. 3 3 3 2 MN 1 Và R = = . 2 2 1 1 Vậy: ( x − 3)2 + y 2 + ( z − ) 2 = 2 4 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 9 of 9
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0