Dao động điều hòa - Phan Văn Lăng
lượt xem 7
download
Dao động điều hòa do Phan Văn Lăng sưu tập sẽ giới thiệu tới các bạn một số dạng bài tập Vật lý về dao dộng điều hòa. Đặc biệt, với những hướng dẫn giải bài tập một cách cụ thể tài liệu sẽ giúp cho các bạn nắm bắt kiến thức về dao động điều hòa một cách tốt hơn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Dao động điều hòa - Phan Văn Lăng
- DAO ĐỘNG ĐIỀU HÒA Câu 1. Một chất điểm M chuyển động với tốc độ 0,75 m/s trên đường tròn có đường kính bằng 0,5m. Hình chiếu M’ của điểm M lên đường kính của đường tròn dao động điều hoà. Tại t = 0s, M’ đi qua vị trí cân bằng theo chiều âm. Khi t = 8s hình chiếu M’ qua li độ: A. 10,17 cm theo chiều dương B. 10,17 cm theo chiều âm C. 22,64 cm theo chiều dương D. 22.64 cm theo chiều âm Giải: Tần số góc của dao động v 0,75 = 3rad / s M R 0,25 Phương trình dao động của M’ x = Acos( t + ) = 0,25cos(3t + ) M’ 2 Vì A = R = 0,25 m khi t = 0: x0 = 0 và v0 = ) 2 Khi t = 8 s: x = 0,25cos (24+1,57) = 0,2264 m =22,64cm v = 0,75sin (24+1,57) = 0,3176 m/s t = 12k. Với k = 0; 1; 2; ....Trường hợp này tmin = 12s không phụ thuộc 3 6 vào vị trí ban đầu của m1 và m2 ; tức là không phụ thuộc pha ban đầu 2. ** x1 và x2 đối pha nhau: P1 và P2 chuyển động ngược chiều gặp nhau; lúc này pha của dao động hai vật đối nhau 4 t = t + 2k π> t = 4k 3 6 Thời gian P1 và P2 gặp nhau phụ thuộc pha ban đầu . Nếu chọn chiều chuyển động ban đầu là chiều dương thì π ≤ ≤ 0 4 P1 gặp P2 lần đầu tiên ứng với k = 0 . t = S 1 ưu tầm by: Phan Văn Lăng
- Ví dụ khi = π > t = 4s = π/2> t = 2s = π/4 > t = 1s Cho tăng từ π đến 0 giá trị của t giảm từ t = 4 s ( = π) và giảm dần đến 0 Nếu chọn chiều chuyển động ban đầu là chiều âm thì 0 ≤ ≤ π 4 P1 gặp P2 lần đầu tiên ứng với k = 1 . t = 4 Ví dụ khi = 0 > t = 4s = π/2> t = 2s = π/4 > t = 1s Cho tăng từ 0 đến π giá trị của t giảm từ t = 4 s ( = 0) dần đến 0 m1 P1 P2 m2 Bài ra phải cho pha ban đầu của 2 dao động thì bài toán mới giải được. m1; m2 Câu 3. Một chất điểm dao động điều hòa trên tr ục Ox. Tốc độ trung bình của chất điểm tương ứng với khoảng thời gian thế năng không vượt quá ba lần động năng trong một nửa chu kỳ là 300 3 cm/s. Tốc độ cực đại của dao động là A. 400 cm/s. B. 200 cm/s. C. 2π m/s. D. 4π m/s. A 3 Khi Wt = 3Wđ � x = khoảng thời gian thế năng không vượt quá ba lần động năng trong 2 A 3 một nửa chu kỳ là là khoảng thời gian x < 2 Dựa vào VTLG ta có: T = ∆t 3 A 3 A 3 S= + =A 3 2 2 S Van toc : v = � A = 100T ∆t 2π � vmax = A.ω = 100T . = 200π cm / s = 2π m / s T S 2 ưu tầm by: Phan Văn Lăng
- Câu 4. Một chất điểm dao động điều hoà có vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9(s). Tính từ thời điểm ban đầu (to = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng A. 6 lần . B. 5 lần . C. 4 lần . D. 3 lần . HD: Vận tốc bằng không tại vị trí biên, vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9(s) � T = ( t2 − t1 ) .2 = 1, 4s Xác định thời điểm ban đầu Pt dao động x = Acos( ωt + ϕ ) Tại thời điểm t1 có x1 = A Acos( ωt1 + ϕ ) = A 22π cos( ωt1 + ϕ ) = 1 ωt1 + ϕ = k2 π ϕ = k2 π −ω t1 = k2 π − 7 6π Vì −π ϕ π k = 2 � ϕ = − 7 t2 − t0 2,9 Xét = = 2, 07 � t2 = 2, 07T M T 1, 4 Tại thời điểm ban đầu chất điểm ở M, sau 2,07T vật ở vị trí biên âm Một chu kì qua VTCB 2 lần sau 2,07 chu kì nó qua VTCB 4 lần Câu 5. Một chất điểm dao động điều hoà trên trục Ox có vận tốc bằng 0 tại hai thời điểm liên tiếp t1 = 1, 75s và t2 = 2,5s , tốc độ trung bình trong khoảng thời gian đó là 16 cm / s . Toạ độ chất điểm tại thời điểm t = 0 là A. 8 cm B. 4 cm C. 0 cm D. 3 cm Giải: Giả sử tại thời điểm t0 = 0;, t1 và t2 chất điểm ở các vị trí M0; M1 và M2; từ thời điểm t1 đến t2 chất điểm CĐ theo chiều dương. Chất điểm có vận tốc bằng 0 tại các vị trí biên Chu kì T = 2(t2 – t1 ) = 1,5 (s) M0 M1 M2 vtb = 16cm/s. Suy ra M1M2 = 2A = vtb (t2 – t1) = 12cm Do đó A = 6 cm. 1 Từ t0 = 0 đến t1: t1 = 1,5s + 0,25s = T + T 6 Vì vậy khi chất điểm ở M0, chất điểm CĐ theo chiều âm, đến vị trí biên âm , trong t=T/6 đi được quãng đường A/2. Do vậy tọa độ chất điểm ơt thời điểm t = 0 là x0 = A/2 = 3 cm. Chọn đáp án D Câu 6. Một vật dao động điều hòa với phương trình x 6 cos(2 t )cm. Tại thời điểm pha của dao động bằng 1 6 lần độ biến thiên pha trong một chu kỳ, tốc độ của vật bằng A. 6 cm / s. B. 12 3 cm / s. C. 6 3 cm / s. D. 12 cm / s. Giải: Độ biến thiên pha trong một chu kỳ bằng 2π Khi pha 2πt – π = 2π/6 > t = 2/3 (s) S 3 ưu tầm by: Phan Văn Lăng
- Vận tốc của vật v = x’ = 12πsin(2πt – π) (cm/s) Tốc độ của vật khi t = 2/3 (s) là 12π sin(π /3) = 6π 3 (cm/s). Chọn đáp án C Câu 7. Vật dao động điều hòa có vận tốc cực đại bằng 3m/s và gia tốc cực đại bằng 30 (m/s2). Thời điểm ban đầu vật có vận tốc 1,5m/s và thế năng đang tăng. Hỏi vào thời điểm nào sau đây vật có gia tốc bằng 15 (m/s2): A. 0,10s; B. 0,15s; C. 0,20s D. 0,05s; Giải: vmax = ωA= 3(m/s) amax = ω2A= 30π (m/s2 ).> ω = 10π T = 0,2s Khi t = 0 v = 1,5 m/s = vmax/2 Wđ = W/4. Tức là tế năng Wt =3W/4 kx02 3 kA2 A 3 = � x0 = � . Do thế năng đang tăng, vật chuyển động theo chiều dương nên vị trí 2 4 2 2 A 3 ban đầu x0 = Vật ở M0 góc φ = π/6 2 Thời điểm a = 15 (m/s2):= amax/2 O x = ± A/2 =. Do a>0 vật chuyển động nhanh dần A về VTCB nên vật ở điểm M ứng với thời điểm t = 3T/4 = 0,15s ( Góc M0OM = π/2). Chọn đáp án B. 0,15s M M0 Câu 8. Hai chất điểm dao động điều hòa với chu kỳ T , lệch pha nhau π / 3 với biên độ lần lượt là A và 2A , trên hai trục tọa độ song song cùng chiều, gốc tọa độ nằm trên đường vuông góc chung. Khoảng thời gian nhỏ nhất giữa hai lần chúng ngang nhau là: A. T / 2 . B. T . C. T / 3 . D. T / 4 . Giải: Do hai đao động cùng chu kì, nên tần số góc bằng nhau. Giả sử tai thời điểm t1 hai chất điểm đi ngang qua trục thẳng đứng thi sau đó nửa chu kì hai chất điểm lại đi qua trục thẳng đứng. Chọn đáp án A: T/2 Câu 9. điểm nào đó dđ 1 có li độ x=A3√2cm đang chuyển động theo chiều dương, còn 2 đi qua x=A2√2cm theo chiều dương. Lúc đó pha của tổng hợp của 2 dao động trên là ? và đang chuyển động theo chiều nào? A. −π/4 và chuyển động theo chiều dương . B. 7π/30 và chuyển động theo chiều âm . C. π/12 và chuyển động theo chiều âm . D. −5π/24 và chuyển động theo chiều dương. Giải: Đầu tiên ta có: S 4 ưu tầm by: Phan Văn Lăng −5π 24
- A 3 −π A1 = Acm; x1 = � + � ϕ1 = 2 6 A 2 −π A2 = Acm; x2 = � + � ϕ2 = 2 4 −π −π sin( ) + sin( ) � tan ϕ = 6 4 = −0, 767326988 −π −π cos( )+cos( ) 6 4 −5π � ϕ = −37,5o = rad 24 Sau đó biểu diễn trên vòng tròn lượng giác ta thấy vật đang đi theo chiều dương Câu 10. Dao động tổng hợp của x1 A1 cos( t )(cm, s ) và x2 6 cos( t )(cm, s ) được 6 2 x A cos( t )(cm, s ) . Khi biên độ A đạt giá trị nhỏ nhất thì j bằng 2 A. B. C. D. 3 4 3 6 2 A A12 A22 2 A1 A2 cos( 2 1) A12 36 2. A1 .6. cos A12 6 A1 36 ( A1 3) 2 27 3 Amin khi A1=3cm Dùng máy tính xác định x 3 3 cos( t )(cm, s ) 3 Câu 11. Một vật dao động điều hoà trong 1 chu kỳ T của dao động thì thời gian độ lớn vận tốc tức thời không nhỏ hơn lần tốc độ trung bình trong 1 chu kỳ là 4 T T 2T T A. B. C. D. 3 2 3 4 4A A A Khi vận tốc bằng lần tốc độ trung bình trong 1 chu kỳ thì v 4 4 T T 2 v2 v2 ( A / 2) 2 3 Tọa độ của vật là 2 x2 A2 x A2 2 A2 2 A 2 Trong một chu kỳ thời gian vận tốc không nhỏ hơn lần tốc độ trung bình trong 1 chu kỳ là 2 lần 4 3 3 T T 2T thời gian đi từ vị trí A đến A t 2( ) 2 2 6 6 3 Câu 12. Có hai vật dao động điều hòa trên hai đoạn thẳng song song và gần nhau với cùng biên độ A A, tần số 3 Hz và 6 Hz. Lúc đầu hai vật xuất phát từ vị trí có li độ . Khoảng thời gian ngắn nhất 2 để hai vật có cùng li độ là? S 5 ưu tầm by: Phan Văn Lăng
- 1 1 1 A. s B. s C. s D. 4 18 26 1 (1) s 27 Vị trí gặp nhau A/2 cos 60 0 A Muốn hai vật gặp nhau tổng góc quay hai vật bằng 2 A/ 2 2 Vậy 1 t 2 t 3 2 2 (2) t( 1 2 ) t (6 12 ) 3 3 1 t s 27 Câu 13. Môt con lăc lo xo treo thăng đ ̣ ́ ̀ ̉ ưng, khi vât ́ ̣ ở vị trí cân bằng lo xo gian 4 cm. Kich thich cho vât ̀ ̃ ́ ́ ̣ dao động điều hòa thi thây th ̀ ́ ơi gian lo xo b ̀ ̀ ị nén trong môt chu ki la T/3 (T la chu ki dao đông cua vât). ̣ ̀ ̀ ̀ ̀ ̣ ̉ ̣ Độ giãn và độ nén lớn nhất của lò xo trong quá trình vật dao động là: 12 cm. và 4 cm. Giải. Thời gian lò xo nén là T/3 Thời gian khi lò xo bắt đàu bị nén đến lúc nén tối đa là T/6. A/2 Độ nén của lò xo là A/2, bằng độ giãn của lò xo khi vật ở vị trí cân bằng. Suy ra A = 8cm. Do đó đọ giãn lớn nhất của lò xo A/2 + A = 4cm + 8cm = 12cm. A/2 Còn độ nén lớn nhất A/2 = 4cm O A Câu 14. Hai chất điểm dao động điều hoà trên cùng một trục tọa độ 0x, coi trong quá trình dao động hai chất điểm không va chạm vào nhau. Biết phương trình dao động của hai chất điểm lần lượt là: x1 = 4cos(4t + ) cm và x2 = 4 2 cos(4t + ) cm. Trong quá trình dao động khoảng cách lớn 3 12 II nhất giữa hai vật là: A. 4cm B. 6cm C. 8cm A1 D. ( 4 2 4)cm GIẢI: (Xem hình vẽ 2 véctơ biểu diễn 2 dao động thảnh phần ) Vì 2 dao động thành phần cùng tần số góc nên trong quá trình dao động tam giác OA1A2 có độ lớn không đổi. A2 /4 Độ lệch pha giữa 2 dao động thành phần : = III O I 3 12 4 x’ x Cạnh OA1 = 4cm ,OA2 = 4 2 cm , và góc A1OA2 = /4 Dễ thấy góc OA1 A2 = /2 và tam giác OA1A2 vuông cân tại A1. S 6 ưu tầm by: Phan Văn Lăng IV
- Suy ra đoạn OA1 =A1A2 = 4cm (không đổi trong quá trình dao động) Đây cũng là khoảng cách giữa 2 vật . Khi đoạn A1A2 song song với x’0x thi lúc đó khoảng cách giữa hai vật chiếu xuống trục x’ox là lớn nhất và bằng 4cm .Chọn A Câu 15. Một vật có khối lượng không đổi, thực hiện đồng thời hai dao động điều hòa có phương trình dao động lần lượt là x1 = 10cos( 2π t + φ) cm và x2 = A2cos( 2π t − π 2 ) cm thì dao động tổng hợp là x = Acos( 2π t − π 3 ) cm. Khi năng lượng dao động của vật cực đại thì biên độ dao động A2 có giá trị là: A. 20 / 3 cm B. 10 3 cm C. 10 / 3 cm D. 20cm Giải: Vẽ giãn đồ véc tơ như hình vẽ A = A1 + A2 Năng lượng dao động của vật tỉ lệ thuận với A2 Theo định lí sin trong tam giác A1 O A1 A1 A O /3 = > sin sin /3 6 A = 2A1sin . A = Amax khi sin = 1. /6 > = /2 (Hình vẽ) A Năng lượng cực đại khi biên độ A= 2A1 = 20 cm. A2 A A2 Suy ra A2 = A 2 A12 = 10 3 (cm). Chọn đáp án B CON LẮC ĐƠN Câu 1. Một con lắc đơn gồm quả cầu nhỏ khối lượng m treo vào sợi dây có chiều dài l = 40 cm. Bỏ qua sức cản không khí. Đưa con lắc lệch khỏi phương thẳng đứng góc α0 = 0,15 rad rồi thả nhẹ, quả cầu dao động điều hòa. Quãng đường cực đại mà quả cầu đi được trong khoảng thời gian 2T/3 là A.18 cm. B. 16 cm. C. 20 cm. D. 8 cm. Ta có: s0 = l.α0 =40.0,15= 6cm Quãng đường cực đại mà quả cầu đi được là khi vật qua vùng có tốc độ cực đại qua VTCb. S 7 ưu tầm by: Phan Văn Lăng
- Coi vật dao động theo hàm cos. Ta lấy đối xứng qua trục Oy Ta có: N M 2T 2π 4π π Góc quét: ∆ϕ = ∆t.ω = . = =π + π 3 T 3 3 3 Trong góc quét: Δφ1 = π thì quãng đường lớn nhất vật đi được là: 6 0 6 Smax1 = 2A =12cm 3 Trong góc quét: Δφ1 = π/3 từ M đến N thì Smax2 = 2.3 = 6cm Vậy Smax = Smax1 + Smax2 = 18cm Câu 2. Một con lắc đơn gồm một dây kim loại nhẹ có đầu trên cố định, đầu dưới có treo quả cầu nhỏ bằng kim loại. Chiều dài của dây treo là l=1 m. Lấy g = 9,8 m/s 2. Kéo vật nặng ra khỏi vị trí cân bằng một góc 0,1 rad rồi thả nhẹ để vật dao động điều hoà. Con lắc dao động trong từ trường đều có vectơ B vuông góc với mặt phẳng dao động của con lắc. Cho B = 0,5 T. Suất điện động cực đại xuất hiện giữa hai đầu dây kim loại là bao nhiêu A. 0,3915 V B. 1,566 V C. 0,0783 V D. 2,349 V S Suất điện động ec B t t M N Giả sử vật chuyển động từ M đến N thì S S quatMN (diện tích hình quạt MN) . l2 .l 2 S 2 2 l2 Bl 2 Vậy ec B. (giống bài toán thanh quay trong từ trường B ở lớp 11 nâng cao). t 2. t 2 Muốn ecmax thì max vmax 2 gl (1 cos 0 ) max R l Thay số ta được câu D Câu 3. Có ba con lắc đơn cùng chiều dài cùng khối lượng cùng được treo trong điện trường đều có ur E thẳng đứng. Con lắc thứ nhất và thứ hai tích điện q1 và q2, con lắc thứ ba không tích điện. Chu kỳ dao động nhỏ của chúng lần lượt là T1, T2, T3 có T1 = 1/3T3 ; T2 = 5/3T3. Tỉ số q1/q2? l qE qE l q E q E l T1 = 2π ; g1 = g + 1 = g(1 + 1 ) ; T2 = 2π ; g 2 = g + 2 = g(1 + 2 ) ; T3 = 2π g1 m mg g2 m mg g ( chu y: q ́ ́ 1 va q ̉ ̉ ́ ̀ 2 kê luôn ca dâu ) T1 g 1 1 qE = = = => 1 = 8 (1) T3 g1 qE 3 mg 1+ 1 mg S 8 ưu tầm by: Phan Văn Lăng
- T2 g 1 5 q E −16 = = = => 2 = (2) T3 g2 q E 3 mg 25 1+ 2 mg q Lây (1) chia (2): ́ 1 = −12,5 q2 Câu 4. Một con lắc đơn có chiều dài l = 64cm và khối lượng m = 100g. Kéo con lắc lệch khỏi vị trí cân bằng một góc 60 rồi thả nhẹ cho dao động. Sau 20 chu kì thì biên độ góc chỉ còn là 30. Lấy g = 2 = 10m/s2. Để con lắc dao động duy trì với biên độ góc 60 thì phải dùng bộ máy đồng hồ để bổ sung năng lượng có công suất trung bình là A. 0,77mW. B. 0,082mW. C. 17mW. D. 0,077mW. Giải: 0 = 60 = 0,1047rad. 2 0 0 Cơ năng ban đầu W0 = mgl(1cos 0) = 2mglsin2 2 mgl 2 2 2 0 Cơ năng sau t = 20T: W = mgl(1cos ) = 2mglsin2 2 mgl 2 =mgl 8 2 2 3 2 0 0 Độ giảm cơ năng sau 20 chu kì: W = mgl( ) = mgl 0 = 2,63.103 J 2 8 8 l 0,64 T = 2π = 2π = 1,6 (s) g 2 Công suất trung bình cần cung cấp để con lắc dao động duy trì với biên độ góc là 60 W 2,63.10 3 WTB = 0,082.10 3 W = 0,082mW. Chọn đáp án B 20T 32 Câu 5. Một con lắc đơn chiều dài dây treo l=0,5m treo ở trần của một ô tô lăn xuống dốc nghiêng với mặt nằm ngang một góc 30o.Hệ số ma sát giữa ô tô và dốc là 0,2. Lấy g=10m/s2. Chu kì dao động của con lắc khi ô tô lăn xuống dốc là: A. 1,51s B.2,03s C. 1,48s D. 2,18s Giải. + Gia tốc của ô tô trên dốc nghiêng: a = g(sinα µcosα) = 10(sin30 – 0,2cos30)= 3,268 l + Chu kì dao động con lắc đơn là: T = 2π a g' ur r r + g ' = g + a => g ' = 10 2 + 3, 2682 + 2.10.3, 268.cos120 0 = 78 T = 1,49s g Câu 6. Một con lắc đơn có chiều dài dây treo là l và vật nặng có khối lượng m, khối lượng riêng D. Đặt con lắc trong chân không thì chu kỳ dao động của nó là T. Nếu đặt nó trong không khí có khối lượng riêng Do thì chu kỳ dao động của con lắc là S 9 ưu tầm by: Phan Văn Lăng
- Giải l Trong chân không: T = 2π (1) g l F m D Trong không khí: T0 = 2π ; với g0 = g + A ; FA = m0 g ; m0 = D0V ;V = � FA = 0 mg g0 m D D l T0 = 2π Suy ra g0 = g(1D0/D) và D0 (2) g (1 − ) D T T0 = Từ (1) và (2), suy ra D0 1− D Câu 7. Một con lắc đơn có chiều dài 1m, đầu trên cố định đầu dưới gắn với vật nặng có khối lượng m. Điểm cố định cách mặt đất 2,5m. Ở thời điểm ban đầu đưa con lắc lệch khỏi vị trí cân bằng một góc ( = 0,09 rad (goc nhỏ) rồi thả nhẹ khi con lắc vừa qua vị trí cân bằng thì sợi dây bị đứt. Bỏ qua mọi sức cản, lấy g = 2 = 10 m/s2. Tốc độ của vật nặng ở thời điểm t = 0,55s có giá trị gần bằng: A. 5,5 m/s B. 0,5743m/s C. 0,2826 m/s D. 1 m/s Giải: l Chu kì dao động của con lắc đơn T = 2 = 2 (s). Thowi g Khi qua VTCB sợi dây đứt chuyển động của vật là CĐ ném ngang từ độ cao h0 = 1,5m với vận tốc ban đầu xác định theo công thức: 2 mv02 2 = mgl(1cos ) = mgl2sin2 2 = mgl 2 > v0 = Thời gian vật CĐ sau khi dây đứt là t = 0,05s. Khi đó vật ở độ cao gt 2 gt 2 h = h0 2 > h0 – h = 2 2 mv02 mv 2 gt mgh0 + 2 = mgh + 2 > v2 = v02 + 2g(h0 – h) = v02 + 2g 2 v2 = v02 + (gt)2 . v2 = ( )2 + (gt)2 > v = 0,5753 m/s Câu 8. Một con lắc đơn dao động điều hòa trong thang máy đứng yên tại nơi có gia tốc trọng trường g = 9,8m/s2 với năng lượng dao động là 150mJ, gốc thế năng là vị trí cân bằng của quả nặng. Đúng lúc vận tốc của con lắc bằng không thì thang máy chuyển động nhanh dần đều đi lên với gia tốc 2,5m/s2. Con lắc sẽ tiếp tục dao động điều hòa trong thang máy với năng lượng dao động : A. 150 mJ. B. 129,5 mJ. C. 111,7 mJ. D. 188,3 mJ 1 Giải Khi chưa chuyển động E1 = mglα 02 2 S 10 ưu tầm by: Phan Văn Lăng
- 1 Khi chuyển động E2 = mg ' lα 02 2 Vì thang máy chuyển động nhanh dần nên g’ = g + a 1 mglα 02 E1 g Ta có = 2 = � E2 = 188,3 mJ đáp an D E2 1 mg ' lα 2 g ' 0 2 Câu 9. Một con lắc đơn gồm vật có khối lượng m, dây treo có chiều dài l = 2m, lấy g = π2. Con lắc dao động điều hòa dưới tác dụng của ngoại lực có biểu thức F = F0cos(ωt + π/2) N. Nếu chu kỳ T của ngoại lực tăng từ 2s lên 4s thì biên độ dao động của vật sẽ: A tăng rồi giảm B chỉ tăng C chỉ giảm D giảm rồi tăng Giải; l 2 Chu kỳ doa động riêng của con lắc đơn T0 = 2 = 2 = 2 2 (s) g 2 Khi tăng chu kì từ T1 = 2s qua T0 = 2 2 (s) đến T2 = 4(s), tấn số sẽ giảm từ f1 qua f0 đến f2.Biên độ của dao động cưỡng bức tăng khi f tiến đến f0 . Do đó trong trường hợp nay ta chọn đáp án A. Biên độ tăng rồi giảm Câu 10. Một con lắc đơn đếm giây có chu kì bằng 2s, ở nhiệt độ 20oC và tại nơi có gia tốc trọng trường 9,813 m/s2, thanh treo có hệ số nở dài là 17.10–6 K–1. Đưa con lắc đến nơi có gia tốc trọng trường là 9,809 m/s2 và nhiệt độ 300C thì chu kì dao động là : A. 2,0007 (s) B. 2,0232 (s) C. 2,0132 (s) D. 2,0006 (s) Giải: Chu kì dao động của con lắc đơn: l T = 2 g l' T’ = 2 với l’ = l(1+ t0) = l(1 + 10 ) g' T' l' g g 1' = = 1 10 Do
- không đáng kể, có k = 100N/m, các vật có khối lượng m = 250g, m0 = 100g. Sau đó vật m dao động với biên độ nào sau đây: A. A = 1,5cm. uu r B. 1,43cm. k m v0 m C. A = 1,69cm. 0 D. A = 2cm. sau va chạm hai vật dao động với biên độ A = 2cm khi qua VTCB lần 1 thì 2 vật tách nhau m dao động với biên độ A’ 1 k 1 5A bảo toàn năng lượng : m A2 = kA'2 � A ' = = 1, 69 2 m + m0 2 35 Câu 2. Một con lắc lò xo treo trên mặt phẳng thẳng đứng gồm 1 lò xo nhẹ có độ cứng k=20N/m, vật nặng có khối lượng m=100g. Ban đầu vật nằm yên tại vị trí lò xo không biến dạng nhờ mặt phẳng nằm ngang cố định. Kéo con lắc lên phía trên cách vị trí ban đầu một đoạn 5cm rồi buông nhẹ. Coi va chạm giữa vật nặng với mặt phẳng cố định là trực diện và đàn hồi. Chu kì dao động của con lắc là Giải m 0,1 Chu kỳ dao động của con lắc lò xo nói chung T 2 2 s k 20 5 2 Ban đầu vật nằm yên tại vị trí lò xo không biến dạng nhờ mặt phẳng nằm ngang cố định mg 0,1.10 x l 0,05m 5cm k 20 T T Khi kéo vật lên trên 5cm thì T ' 2t10 cm 5 2 s 6 3 15 2 Câu 3. Hai vật A, B dán liền nhau mB=2mA=200g, treo vào 1 lò xo có độ cứng k=50N/m. Nâng vật lên đến vị trí lò xo có chiều dài tự nhiên l0=30cm thì buông nhẹ. Lấy g=10m/s2. Vật dao động điều hòa đến vị trí lực đàn hồi lò xo có độ lớn lớn nhất, vật B tách ra. Tính chiều dài ngắn nhất của lò xo A. 26 B. 24 C. 30 D. 22 Giải m A mB g (0,2 0,1)10 Độ biến dạng ban đầu khi hệ vật ở VTCB là l 0,06m 6cm k 50 Nâng vật lên đến vị trí lò xo có chiều dài tự nhiên l0=30cm thì buông nhẹ. Do đó A = 6cm m A g 0,1.10 Độ biến dạng lúc sau của vật khi vật B tách ra là l ' 0,02m 2cm k 50 Chièu dài ngắn nhất của lò xo là l l0 l ' A 30 2 6 26cm Câu 4. Treo vào 1 điểm O một đầu lò xo khối lượng không đáng kể độ dài tự nhiên l 0 =30cm. Đầu dưới lò xo treo vật M làm lò xo dãn ra 10cm. Bỏ qua mọi lực cản, cho g=10m/s 2. Nâng vật M đến vị trí cách O đoạn 38cm rồi truyền cho vận tốc ban đầu hướng xuống dưới bằng 20cm/s. Chọn trục tọa độ phương thẳng đứng chiều dương đi lên. Viết phương trình dao động của M. Tìm thời điểm vật qua vị trí cân bằng lần thứ 2? Giải k g 10 * l 10cm ; 10rad / s m l 0,1 S 12 ưu tầm by: Phan Văn Lăng
- A cos 2 Khi t = 0 thì chia vế theo vế ta được tan 10 tan 1 tan A sin 20 4 2 4 A 2 2cm Vậy ta chọn Suy ra 5 4 cos 4 0 2 4 Vậy x 2 2 cos(10t )(cm, s) 4 x 2 T T 7T 7 2 7 * Khi t = 0 thì Khi qua VTCB lần 2 thì t s v 0 12 2 12 12 10 60 Câu 5. Một con lắc lò xo gồm viên bi nhỏ khối lượng m và lò xo khối lượng không đáng kể có độ cứng k=10N/m. Con lắc dao động cưỡng bức dưới tác dụng của ngoại lực tuần hoàn có tần số góc F . Biết biên độ của ngoại lực tuần hoàn không thay đổi. Khi thay đổi F thì biên độ dao động của của viên bi thay đổi và khi F 10rad / s thì biên độ dao động của viên bi đạt giá trị cực đại. Khối lượng m bằng A. 100g B. 120g C. 40g D. 10g Giải Biên độ dao động của viên bi đạt giá trị cực đại khi xảy ra cộng hưởng k k k 10 F 0 10 100 m 0,1kg m m 100 100 Câu 6. Một con lắc lò xo có khối lượng không đáng kể, k=100N/m đặt nằm ngang, một đầu giữ cố định, còn đầu còn lại gắn vào vặt có m1=0,5 kg. Chất điểm m1 được gắn với chất điểm m2 =0,5 kg. Các chất điểm này có thể dao động không ma sát trên trục Ox nằm ngang ( gốc tọa độ O trùng với VTCB) hướng từ điểm cố định giữ lò xo về phía các chất điểm m1, m2. Tại thời điểm ban đầu giữ hai vật ở vị trí lò xo nén 2 cm rồi buông nhẹ. Bỏ qua ma sát của môi trường, hê dao động đh. Gốc thời gian là lúc buông vật. Chỗ gắn hai chất điểm bị bong ra nếu lực kéo tại đó đạt đến 1N. thời gian mà vật m2 tách ra khỏi m1 là: Giải: Chu kì dao động của hệ khi m2 chưa bong ra: m1 m2 1 T = 2π 2π 0,2 0,628 (s) k 100 Vị trí m2 bị bong ra F = kx = 1N > x = 1 cm Thời gian mà m2 tách ra khỏi m1 là khoảng thời gian các vật đi từ vị trí biên âm x = 2 cm đến vị trí x = A/2 = 1cm: t = T/4 + T/12 = T/3 = 0,628/3 =0,209 s Câu 7. Hai vật A và B dán liền nhau mB=2mA=200g, treo vào một lò xo có độ cứng k =50 N/m. Nâng vật lên đến vị trí lò xo có chiều dài tự nhiên L0=30 cm thì buông nhẹ. Vật dao động điều hoà đến vị trí lực đàn hồi của lò xo có độ lớn lớn nhất , vật B bị tách ra. Tính chiều dài ngắn nhất của lò xo. A. 26 cm, B. 24 cm. C. 30 cm. D.22 cm S 13 ưu tầm by: Phan Văn Lăng
- (mA + mB ) g Giải: Khi treo 2 vật độ giãn của lò xo: ∆l = = 0, 06m = 6cm . k A’ Biên độ dao động của hệ lúc này A = 6 cm’ Lực đàn hồi của lò xo lớn nhất khi độ dài của lò xo lmax = 36 cm. Khi vật B tách ra hệ dao động điều hoà với vị trí cân bằng mới l’ O’ m g ∆l ' = A = 0, 02m = 2cm k Biên độ dao động của con lắc lò xo lấn sau A’ = 10cm.. A’ Suy ra chiều dài ngắn nhất của lò xo lmin = 30 –(102) = 22cm x Chọn đáp án D. Câu 8.Con lắc lò xo dao động điều hòa theo phương ngang với biên độ A. Đúng lúc con lắc qua vị trí có động năng bằng thế năng và đang giãn thì người ta cố định một điểm chính giữa của lò xo, kết quả làm con lắc dao động điều hòa với biên độ A’. Hãy lập tỉ lệ giữa biên độ A và biên độ A’. Giải. Khi Wđ = Wt > Wt = W/2 kx 2 1 kA 2 A 2 > x = 2 2 2 2 A 2 vật ở M, cách VTCB OM = 2 Khi đó vật có vận tốc v0 mv02 1 kA 2 kA 2 Wđ v 02 O 2 2 2 2m Sau khi bị giữ độ cứng của lò xo k’ = 2k. Vật dao động quanh VTCB mới O’ O’ M 1 A 2 1 A 2 MO’ = x0 = (l 0 ) l0 với l0là chiều dài tự nhiên của lò xo 2 2 2 4 k' 2k Tần số góc của dao động mới ’ = m m Biên độ dao động mới A’ kA 2 v02 A 2 2m A2 A2 3 A2 A 6 A’2 = x02 = > A’ = ' 2 8 2k 8 4 8 4 m Câu 9. Một con lắc lò xo nằm ngang có vật nhỏ khối lượng m, dao động điều hoà với biên độ A. Khi vật đến vị trí có động năng bằng 3 lần thế năng thì một vật khác m' (cùng khối lượng với vật m) rơi thẳng đứng và dính chặt vào vật m thì khi đó 2 vật tiếp tục dao động điều hoà với biên độ 7 5 5 2 A. A B. A C. A D. A 2 2 2 4 2 S 14 ưu tầm by: Phan Văn Lăng
- A Khi vật đến vị trí có động năng bằng 3 lần thế năng tức x . Lúc này vận tốc của vật 2 k A 3 v A2 x2 . m 2 thì va chạm mềm với vật m’. Áp dụng đinh luật bảo toàn động lượng theo phương ngang mv v k A 3 mv (m m' )v' v' m m' 2 m 4 Áp dụng công thức độc lập k 3 A2 2 2 . v' v' m 16 A2 6 A2 A2 10 x2 A'2 A' x2 A 2 2 k 4 16 4 4 2m Câu 10. Một con lắc lò xo được treo thẳng đứng gồm lò xo có độ cứng k và vật nặng khối lượng 2m. Từ vị trí cân bằng đưa vật tới vị trí lò xo không bị biến dạng rồi thả nhẹ cho vật dao động. Khi vật xuống dưới vị trí thấp nhất thì khối lượng của vật đột ngột giảm xuống còn một nửa. Bỏ qua mọi ma sát và gia tốc trọng trường là g. Biên độ dao động của vật sau khi khối lượng giảm là 3mg 2mg 3mg mg A. B. C. D. k k 2k k 2m.g Độ biến dạng ở VTCB ban đầu l A k Khi vật xuống dưới vị trí thấp nhất thì khối lượng của vật đột ngột giảm xuống còn một nửa (còn m.g m) thì độ biến dạng ở VTCB lúc sau là l ' . Biên độ sau khi khối lượng giảm k 3mg A' l l' k Câu 11. Một con lắc lò xo nằm ngang gồm vật nặng tích điện q=20 μC và lò xo có độ cứng k=10N.m1. Khi vật đang nằm cân bằng, cách điện, trên mặt bàn ngang nhẵn, thì xuất hiện tức thời một điện trường đều E trong không gian bao quanh có hướng dọc theo trục lò xo. Sau đó con lắc dao động trên một đoạn thẳng dài 8,0cm. Độ lớn cường độ điện trường E là. A. 2,5.104 V.m1 B. 4,0.104 V.m1 C. 3,0.104 V.m1 D. 2,0.104 V.m1 Giải: Ta tưởng tượng con lắc này như con lắc lò xo thẳng đứng với lực điện đóng vai trò là trọng lực. qE Tại vị trí cân bằng mới (khi có thêm lực điện ) lò xo biến dạng đoạn : ∆l = k Tại thời điểm ban đầu coi như đưa vật đến vị trí lò lo không biến dạng rồi buông nhẹ nên biên độ dao động A=Δl=4cm. Từ đó ta có k∆l 10.4.10−2 E= = −6 = 2.104 (V / m) >Đáp án D q 20.10 S 15 ưu tầm by: Phan Văn Lăng
- Câu 12. Một lò xo có độ cứng k nằm ngang, một đầu gắn cố định một đầu gắn vật khối lượng m. Kích thích để vật dao động điều hòa với vận tốc cực đại bằng 3m/s và gia tốc cực đại bằng 30 (m/s2). Thời điểm ban đầu t = 0 vật có vận tốc v = +1,5m/s và thế năng đang tăng. Hỏi sau đó bao lâu vật có gia tốc bằng 15 (m/s2) A. 0,05s B. 0,15s C. 0,10s D. 0,20s Ta có vmax = A = 3 (m/s) và amax = 2A = 30π (m/s2 ) M 0,3 > = 10π (rad/s) và A = (m) vì ban đầu vận tốc v = +1,5m/s và thế năng đang tăng nên vật –3 0 3 đang đi đến vị trí biên. ( Tại M) 1,5 từ đây dễ dàng suy ra phương trình của li độ và gia tốc. Vì li độ trễ hơn v là π/2 nên π ϕ X = − rad 6 Vì gia tốc ngược pha với x nên: 5π ϕa = rad 6 Ta biểu diễn gia tốc trên VTLG: khi a = 15π m / s tại P 2 N 5π góc quét: π π π 6 ∆ϕ = + = rad –30π –15π 0 30π 6 3 2 ∆ϕ � ∆t = = 0, 05( s) ý A ω P Câu 13. Một con lắc lò xo nằm ngang gồm vật nhỏ khối lượng 200 gam, lò xo có độ cứng 10 N/m, hệ số ma sát trượt giữa vật và mặt phẳng ngang là 0,1 . Ban đầu vật được giữ ở vị trí lò xo giãn 10cm , rồi thả nhẹ để con lắc dao động tắt dần, lấy g = 10m / s 2 . Trong khoảng thời gian kể từ lúc thả cho đến khi tốc độ của vật bắt đầu giảm thì độ giảm thế năng của con lắc là: A. 2 mJ. B. 20 mJ. C. 50 mJ. D. 48 mJ. Giải: S 16 ưu tầm by: Phan Văn Lăng
- Tốc độ của vật bắt đàu giảm khi Fđh = Fms k l = µmgS Với S = l0 l Suy ra l = 0,002 (m), S = 0,098 (m) k (∆l0 ) 2 k (∆l ) 2 ∆w t = − − µ mgS = 0, 04802 J 48mJ Chọn đáp án D 48 (mJ) 2 2 Câu 14. Một vật nặng có khối lượng m, điện tích q = + 5. 10 5 (C) được gắn vào lò xo có độ cứng k = 10 N/m tạo thành con lắc lò xo nằm ngang . Điện tích trên vật nặng không thay đổi khi con lắc dao động và bỏ qua mọi ma sát. Kích thích cho con lắc dao động điều hòa với biên độ 5cm . Tại thời điểm vật nặng đi qua vị trí cân bằng và có vận tốc hướng ra xa điểm treo lò xo, người ta bật một điện trường đều có cường độ E = 104 V/m , cùng hướng với vận tốc của vật. Khi đó biên độ dao động mới của con lắc lò xo là: A. 10cm. B. 7,07cm. C. 5cm. D. 8,66cm. Giải Động năng của vật khi đi qua vị trí cân bằng (khi chưa có điện trường) mv20 kA 12 = 2 2 Vị trí cân bằng mới (khi có thêm điện trường) lò xo biến dạng một đoạn: qE ∆l = = 0,05m = 5cm k Ở thời điểm bắt đầu có điện trường có thể xem đưa vật đến vị trí lò xo có độ biến dạng Δl và truyền cho vật vận tốc v0. Vậy năng lượng mới của hệ là kA 22 k(∆l)2 mv20 kA 2 W= = + = 2 1 � A 2 = A 1 2 = 7,07cm 2 2 2 2 . Đ/a B k∆l 2 kA 12 (Δl=A1=5cm nên = ) 2 2 Câu 15.. Một cllx đặt nằm ngang dao động điều hòa với biên độ A chu kì T. Sau khỏng thời gian T/12 kể từ lúc vật qua vị trí cân bằng thì giữ đột ngột điểm chính giữa lò xo lại. Biên độ dao động của vật sau khi giữ là? Giải. Sau t = T/12 vật ở M, cách VTCB OM = A/2 Khi đó vật có vận tốc v0 mv02 3 kA 2 3 kA 2 Wđ v 02 O 2 4 2 4 m Sau khi bị giữ độ cứng của lò xo k’ = 2k. Vật dao động quanh VTCB mới O’ O’ M MO’ = x0 = 0,75A – 0,5A = 0,25A. k' 2k Tần số góc của dao động mới ’ = m m Biên độ dao động mới A’ S 17 ưu tầm by: Phan Văn Lăng
- 3kA 2 2 2 v 2 A 4 m A2 3A2 7 A2 A 7 A’ = x0 2 = 0 > A’ = ' 2 16 2 k 16 8 16 4 m Câu 16. Hai vật A và B dán liền nhau m B=2mA=200g, treo vào một lò xo có độ cứng k =50 N/m. Nâng vật lên đến vị trí lò xo có chiều dài tự nhiên L0=30 cm thì buông nhẹ. Vật dao động điều hoà đến vị trí lực đàn hồi của lò xo có độ lớn lớn nhất , vật B bị tách ra. Tính chiều dài ngắn nhất của lò xo. A. 26 cm, B. 24 cm. C. 30 cm. D.22 cm (mA + mB ) g Giải: Khi treo 2 vật độ giãn của lò xo: ∆l = = 0, 06m = 6cm . k A’ Biên độ dao động của hệ lúc này A = 6 cm’ Lực đàn hồi của lò xo lớn nhất khi độ dài của lò xo lmax = 36 cm. Khi vật B tách ra hệ dao động điều hoà với vị trí cân bằng mới O’ m g ∆l ' = A = 0, 02m = 2cm k Biên độ dao động của con lắc lò xo lấn sau A’ = 10cm.. A’ Suy ra chiều dài ngắn nhất của lò xo lmin = 30 –(102) = 22cm x Chọn đáp án D. Câu 17. Một con lắc lò xo dao động điều hòa theo một phương nhất định, khi vật nặng đi qua vị trí cân bằng thì người ta giữ cố định điểm chính giữa của lò xo lại. Bắt đầu từ thời điểm đó vật sẽ dao động điều hoà với biên độ là A. tăng 2 lần B. giảm 2 lần C. giảm 2 lần D. như lúc đầu. Giai: ̉ ̀ ̃ ̀ ̣ ứng tăng 2 lân,k lo xo giam ½ thi đô c ̀ /=2k 1 2 1 / /2 A Ta co ́ kA = k A � A = / 2 2 2 Câu 18. Một con lắc lò xo gồm vật m 1 (mỏng, phẳng) có khối lượng 2kg và lò xo có độ cứng k = 100N/m đang dao động điều hòa trên mặt phẳng nằm ngang không ma sát với biên độ A= 5 cm. Khi vật m1 đến vị trí biên thì người ta đặt nhẹ lên nó một vật có khối lượng m 2. Cho hệ số ma sát giữa m2 và m1 là 0.2; g 10m / s 2 . Giá trị của m2 để nó không bị trượt trên m1là A. m2 0,5kg B. m2 0,4kg C. m2 0,5kg D. m2 0,4kg Giải Để vật m2 không trượt trên m1 thì lực quán tính cực đại tác dụng lên m 2 có độ lớn không vượt quá lực ma sát nghỉ giữa m1 và m2 tức là Fmsn Fqt max 2 k m2 g m2 amax g A g A m2 0,5(kg ) m1 m2 Câu 19. Một con lắc lò xo dao động theo phương ngang gồm vật m=1kg và lò xo k=10N/m,hệ số ma sát trượt giữa vật và mặt sàn là μ=0,2.Từ vị trí lò xo có độ dài tự nhiên người ta dùng lực F có S 18 ưu tầm by: Phan Văn Lăng
- phương dọc trục lò xo ép từ từ vào vật tới khi vật dừng lại thì thấy lò xo nén 10cm rồi thả nhẹ,vật dao động tắt dần.Cho g=10m/s2.Tìm giá trị F: Giải: Khi ép vật lực ép vật cân bằng với lực ma sát và lược đàn hồi.Khi vật dừng lại F = Fđh ==> F = k. ∆l = 10. 0,1 = = 1N. Câu 20. Một con lắc lò xo có độ cứng k=40N.m1 đầu trên được giữ cố định còn phia dưới gắn vật m. Nâng m lên đến vị trí lò xo không biến dạng rồi thả nhẹ vật dao động điều hòa theo phương thẳng đứng với biên độ 2,5cm. Lấy g=10m/s2.Trong quá trình dao động, trọng lực của m có công suất tức thời cực đại bằng A.0,41W B.0,64W C.0,5W D.0,32W Giải: Công suất tức thời của trọng lực P = mgv với v là vận tốc của vật m kA 2 kA Pmax = mgvmax = mg. = g A mk = gA k (vì A = ∆l) m g > Pmax = kA Ag = 40.2,5.102 2,5.10 2.10 = 0,5W. Đáp án C Câu 20. Một CLLX gồm lò xo có K=100N/m và vật nặng m=160g đặt trên mặt phẳng nằm ngang .Kéo vật đến vị trí lò xo dãn 24mm rồi thả nhẹ .Hệ số ma sát giữa vật và mặt phẳng ngang là 5/16.Lấy g=10m/s2.Từ lúc thả đến lúc dừng lại ,vật đi được quãng đường bằng: A.43,6mm B.60mm C.57,6mm D.56mm Giải: kA 2 kA' 2 Gọi độ giảm biên độ sau mỗi lầ vật qua VTCB là A: = Fms (A + A’) 2 2 2 mg A = A – A’ = = 0,01m = 10 mm. Như vậy sau hai lần vật qua VTCB và dừng lại ở vị trí k cách VTCB 4mm. Tổng quãng đường mà vật đã đi là S = 24 +14x2 + 4 = 56 mm . Chọn đáp án D Câu 21 Một con lắc lò xo có độ cứng k=100N/m và vật nặng khối lượng M=100g. Vật dao động điều hòa theo phương thẳng đứng với biên độ A=4cm. Khi vật ở biên độ dưới người ta đặt nhẹ nhàng một vật m=300g vào con lắc. Hệ hai vật tiếp tục dao động điều hòa. Vận tốc dao động cực đại của hệ là: A. 30 π cm/s B. 8 π cm/s C. 15 π cm/s D. 5 π cm/s Giải. Cơ năng của hệ được bảo toàn bằng:W = KA2/2 = 0,08J + Tại VTCB lúc đầu độ giãn lò xo là l0 = Mg/K = 0,01m = 1cm. + Tại vị trí biên dưới x = 5cm thì Fđh = K(A+ l0) = 5N + Khi đặt thêm vật m = 300g nhẹ lên M => P = ( M + m)g = 4N => Khi thả tay ra thì vật tiếp tục đi lên + Vị trí cân bằng của mới của hệ vật (M + m) dịch xuống dưới so VTCB cũ đoạn x0 = mg/K = 0,03m S 19 ưu tầm by: Phan Văn Lăng
- + Vậy biên độ dao động mới của hệ bây giờ là A’ = A – x0 = 1cm => Vận tốc dao động cực đại của hệ là: K 100 vMax = A’. = A’. =0,01. = π/20m/s = 5 πcm/ M+m 0,1 + 0,3 Câu 22. Một con lắc lò xo nằm ngang gồm lò xo có độ cứng k = 100N/m, vật có khối lượng m = 400g, hệ số ma sát giữa vật và giá đỡ là = 0,1. Từ vị trí cân bằng vật đang nằm yên và lò xo không biến dạng người ta truyền cho vật vận tốc v = 100cm/s theo chiều làm cho lò xo giảm độ dài và dao động tắt dần. Biên độ dao động cực đại của vật là bao nhiêu? A. 5,94cm B. 6,32cm C. 4,83cm D.5,12cm Giải: mv 2 kA 2 Gọi A là biên độ dao động cực đại là A. ta có = + mgA. 2 2 50A2+ 0,4A – 0,2 = 0 > A = 0,05937 m = 5,94 cm Câu 23. Một con lắc lò xo gồm một vật nhỏ khối lượng 100g và lò xo nhẹ có độ cứng 0,01N/cm. Ban đầu giữ vật ở vị trí lò xo dãn 10cm rồi buông nhẹ cho vật dao động. Trong quá trình dao động lực cản tác dụng lên vật có độ lớn không đổi 103 N. Lấy π2 = 10. Sau 21,4s dao động, tốc độ lớn nhất của vật chỉ có thể là A. 58πmm/s B. 57πmm/s C. 56πmm/s D. 54πmm/s Giải: m 0,1 Chu kì dao động: T = 2 = 2 = 2 (s). k = 0,01N/cm = 1N/m k 1 Độ giảm biên độ sau mỗi lần qua VTCB (sau mỗi nửa chu kì) A = A0 – A’ được tính theo công thức k ( A02 A' 2 ) = FC(A0 + A’) > A = 2FC/k 2.103m = 2mm. 2 A M O A0 Sau 21s = 10,5T biên độ của vật còn A = A0 – 21. A = 5,8 cm. Ở thời điểm t = 21,4 s vật ở M chưa qua VTCB ( vì khoảng thời gian 0,4s = T/5 0,05v2 = 0,5, 0,0582 0,058.103 = 16,24.104 2 2 v = 0,18022 m/s = 180,22mm/s = 56,99 mm/s 57 mm/s (Với = 10 ) Chọn đáp án B Câu 24. Hai con lắc lò xo giông nhau có khối lượng vật nặng 10 g , k=100π2 (?) dao động điều hòa dọc theo hai đường thẳng song song liền kề nhau( vtcb hai vật chung gốc tọa độ). Biên độ con lắc 1 gấp 2 lần con lắc 2. Biết 2 vật gặp nhau khi chúng chuyển động ngược chiều nhau, Khoảng thời gian giữa 2011 lần 2 vật gặp nhau liên tiếp ? S 20 ưu tầm by: Phan Văn Lăng
CÓ THỂ BẠN MUỐN DOWNLOAD
-
KẾ HOẠCH TỔ CHỨC HOẠT ĐỘNG MỘT NGÀY - CHỦ ĐỀ NHÁNH: NHU CẦU GIA ĐÌNH
10 p | 552 | 31
-
Chủ Đề: Chào năm mới - Đề tài: Mùa xuân vui - Lớp : Mầm
4 p | 225 | 11
-
Chủ Đề: Chào năm mới - Đề tài: Qua cầu xem hội hoa xuân - Lớp : Mầm
4 p | 153 | 10
-
Sáng kiến kinh nghiệm Mầm non: Một số biện pháp nâng cao chất lượng phát triển ngôn ngữ cho trẻ 4-5 tuổi trong trường mầm non
12 p | 24 | 7
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn