Đề cương ôn tập học kì 1 môn Toán 11 năm 2019-2020 - Trường THPT Bùi Thị Xuân
lượt xem 2
download
Để đạt thành tích cao trong kì thi sắp tới, các bạn học sinh có thể sử dụng tài liệu Đề cương ôn tập học kì 1 môn Toán 11 năm 2019-2020 - Trường THPT Bùi Thị Xuân sau đây làm tư liệu tham khảo giúp rèn luyện và nâng cao kĩ năng giải đề thi, nâng cao kiến thức cho bản thân để tự tin hơn khi bước vào kì thi chính thức. Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề cương ôn tập học kì 1 môn Toán 11 năm 2019-2020 - Trường THPT Bùi Thị Xuân
- TRƯỜNG THPT BÙI THỊ XUÂN TỔ TOÁN ĐỀ CƯƠNG ÔN TẬP HKI MÔN TOÁN 11 NĂM HỌC 20192020 A: ĐẠI SỐ . CHƯƠNG I: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC I. 1.HÀM SỐ LƯỢNG GIÁC I.1.1 Tập xác định của hàm số lượng giác Câu 1: Tập xác định D của hàm số là A. . B.. C. . D. Câu 2: Tập xác định của hàm số là A. . B. . C. . D. R. Câu 3: Tìm tập xác định D của hàm số . A. . B. C. . D. Câu 4: Tập xác định của hàm số là A. . B. R. C. . D. Câu 5: Điều kiện xác định của hàm số là A. B. . C. . D. . I.1.2 Tính chẵn lẻ của hàm số lượng giác Câu 6: Mệnh đề nào sau đây sai? A. Hàm số là hàm số lẻ. B. Hàm số là hàm số chẵn. C. Hàm số là hàm số chẵn. D. Hàm số là hàm số lẻ. Câu 7: Trong các hàm số sau đâu là hàm số chẵn trên R? A. . B. . C. . D. Câu 8: Hàm số nào sau đây là hàm số chẵn trên R? A. y = x.cos2x. B. y = sinx. C. y = D. Câu 9: Trong các hàm số sau hàm số nào là hàm số lẻ? A. . B. C. D. I.1.3 Tính đồng biến, nghịch biến của hàm số lượng giác Câu 10: Hàm số nghịch biến trên khoảng nào sau đây? A. B. C. . D. Câu 11: Hàm số đồng biến trên khoảng nào sau đây? A. B. C. D. Câu 12: Xét hàm số trên đoạn. Khẳng định nào sau đây đúng? A. Trên các khoảng hàm số luôn đồng biến. B.Trên khoảng hàm số đồng biến và trên khoảng hàm số nghịch biến. C. Trên khoảng hàm số nghịch biến và trên khoảng hàm số đồng biến. D. Trên các khoảng hàm số luôn nghịch biến. Câu 13: Xét hàm số trên khoảng . Khẳng định nào sau đây đúng? A. Trên khoảng hàm số luôn đồng biến. B.Trên khoảng hàm số đồng biến và trên khoảng hàm số nghịch biến. C. Trên khoảng hàm số nghịch biến và trên khoảng hàm số đồng biến. D. Trên khoảng hàm số luôn nghịch biến. 1
- Câu 14: Xét hàm số trên khoảng . Khẳng định nào sau đây đúng? A. Trên khoảng hàm số luôn đồng biến. B.Trên khoảng hàm số đồng biến và trên khoảng hàm số nghịch biến. C. Trên khoảng hàm số nghịch biến và trên khoảng hàm số đồng biến. D. Trên khoảng hàm số luôn nghịch biến. Câu 15: Hàm số nghịch biến trên khoảng nào sau đây? A. B. C. D. I.2. PHƯƠNG TRÌNH LƯỢNG GIÁC 1 2 Câu 1: Nghiệm của phương trình sinx = là π π π x = + k 2π x = + kπ x= + k 2π 3 6 x = kπ 6 A. . B. . C. . D. . 1 2 Câu 2: Nghiệm của phương trình cosx = – là π π 2π π x= + k 2π x= + k 2π x= + k 2π x= + kπ 3 6 3 6 A. . B. . C. . D. . 1 2 Câu 3: Nghiệm của phương trình cos2x = là π π π π π x= + k 2π x= +k x= + k 2π x= + k 2π 2 4 2 3 4 A. . B. . C. . D. . Câu 4: Nghiệm của phương trình sin3x = cosx là π π π π x = + k ; x = + kπ x = k 2π ; x = + k 2π 8 2 4 2 A. . B. . π π x = kπ; x = +k π x = kπ ; x = k 4 2 C. . D. . π 3 Câu 5: Nghiệm của phương trình 2sin(4x – ) – 1 = 0 là π π 7π π π x = +k ;x = +k x = k 2π ; x = + k 2π 8 2 24 2 2 A. . B. . π x = π + k 2π ; x = k x = kπ ; x = π + k 2π 2 C. . D. . Câu 6: Nghiệm của pt cotx + = 0 là A. . B. . C. . D. . Câu 7: Trong các phương trình sau phương trình nào vô nghiệm ? (I) cosx = (II) sinx = 1– (III) sinx + cosx = 2 A. (I). B. (II). C. (III). D. (I) và (II). Câu 8: Nghiệm của phương trình sinx.cosx.cos2x = 0 là 2
- π π π x = k. x = k. x = k. x = kπ 2 8 4 A. . B. . C. . D. . Câu 9: Nghiệm của phương trình sin x – sinx = 0 thỏa điều kiện: 0
- A. . B. . C. . D. . Câu 4: Một hộp bi có viên bi đỏ, viên bi vàng và viên bi xanh. Hỏi có bao nhiêu cách lấy ra viên bi trong đó số viên bi đỏ lớn hơn số viên bi vàng. A. . B. . C. . D. . Câu 5: Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT Bùi Thị Xuân theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh tham gia IOE cấp tỉnh. Tính số cách lập đội tuyển sao cho có học sinh cả ba khối. A. . B. . C. . D. . Câu 6: Cho 10 điểm phân biệt trong đó có 4 điểm thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 diểm trên? A. tam giác. B. tam giác. C. tam giác. D. tam giác. Câu 7: Cho hai đường thẳng và song song với nhau. Trên đường thẳng có 5 điểm phân biệt và trên đường thẳng có 10 điểm phân biệt. Hỏi có thể tạo được bao nhiêu tam giác có các đỉnh là các điểm nằm trên hai đường thẳng và đã cho? A. tam giác. B. tam giác. C. tam giác. D. tam giác. Câu 8: Đề kiểm tra tập trung môn toán khối 11 của một trường THPT gồm hai loại đề tự luận và trắc nghiệm. Một học sinh tham gia kiểm tra phải thực hiện hai đề gồm một đề tự luận và một đề trắc nghiệm, trong đó loại đề tự luận có 12 đề, loại đề trắc nghiệm có 15 đề. Hỏi mỗi học sinh có bao nhiêu các chọn đề kiểm tra? A. . B. . C. . D. . Câu 9: Cho tập . Số các số tự nhiên có năm chữ số đôi một khác nhau được lấy ra từ tập là: A. . B. . C. . D. . Câu 10: Cho tập . Từ tập có thể lập được bao nhiêu số tự nhiên có năm chữ số và chia hết cho . A. . B. . C. . D. . Câu 11: Cho tập . Từ tập có thể lập được bao nhiêu số tự nhiên có bốn chữ số và chia hết cho . A. . B. . C. . D. . Câu 12: Từ các chữ số có thể lập được bao nhiêu số tự nhiên lẻ có bốn chữ số đôi một khác nhau và phải có mặt chữ số 3? A. . B. . C. . D. . Câu 13: Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ? A. . B. . C. . D. . Câu 14: Giá trị của thỏa mãn là A. . B. . C. . D. . Câu 15: Giá trị của thỏa mãn là A. . B. . C. hoặc . D. hoặc . II.2. Nhị thức Newton Câu 16: Hệ số của x8 trong khai triển là A. . B. . C. . D. . Câu 17: Hệ số của x trong khai triển là 12 A. . B. . C. . D. . Câu 18: Hệ số của x trong khai triển là 7 A. . B. . C. . D. . Câu 19: Trong khai triển (1+x) biết tổng các hệ số .Hệ số của x bằng n 3 A. . B. . C. . D. . Câu 20: Mệnh đề nào sau đây là đúng? 4
- A. B. C. D. Câu 21: Tìm số nguyên dương thỏa mãn . A. B. C. D. Câu 22: Giá trị của tổng là: A. . B. . C. . D. . II.3. Xác suất và các qui tắc tính xác suất Câu 1: Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ. A. . B. . C. . D. . Câu 2: Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ. A. . B. . C. . D. . Câu 3: Gieo ngẫu nhiên 2 con xúc xắc. Gọi A là biến cố: ‘‘Tổng số chấm xuất hiện trên hai con xúc xắc là một số lẻ’’. Khi đó số kết quả thuận lợi cho biến cố A là A. 16. B. 24. C. 12. D. 18. Câu 4: Một tổ có 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 4 học sinh. Xác suất để trong 4 học sinh được chọn luôn có học sinh nữ là A. . B. . C. . D. . Câu 5: Gọi X là tập các số tự nhiên có 4 chữ số đôi một khác nhau lập được từ các chữ số 1,2, 3,4,5, 6,7. Lấy ngẫu nhiên một số trong X. Xác suất để số được chọn có tổng các chữ số là một số lẻ là= A. . B. . C. . D. . Câu 6: Gieo ngẫu nhiên 2 con xúc xắc. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6 là A. . B. . C. . D. . Câu 7: Gọi X là tập các số tự nhiên có 4 chữ số đôi một khác nhau lập được từ các chữ số 0,1,2, 3,4,6. Lấy ngẫu nhiên một số trong X. Xác suất để số được chọn chia hết cho 3 là A. . B. . C. . D. . Câu 8: Hai khẩu pháo cao xạ cùng bắn độc lập với nhau vào một mục tiêu. Xác suất bắn trúng mục tiêu lần lượt là 0,6 và 0,7. Tính xác suất để mục tiêu bị trúng đạn. A. 0,88. B. 0,46. C. 0,42. D. 0,28. Câu 9: Gieo một đồng xu liên tiếp 3 lần. Xác suất của biến cố A: “ kết qủa của 3 lần gieo như nhau” là: A. . B. . C. . D. . Câu 10: Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi đỏ. A. . B. . C. Đáp án khác. D. . 5
- Câu 11: Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra thuộc 3 môn khác nhau. A. . B. . C. . D. . Câu 12: Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có ít nhất một nữ. A. . B. . C. . D.. Câu 13: Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ. B. . B. . C. . D.. Câu 14: Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra đều là môn toán. A. . B. . C. . D. . Câu 15.Gieo một con xúc xắc cân đối đồng chất 2 lần, tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn. A. B. C. D. Câu 16.Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca, tính xác suất để trong 4 người được chọn có ít nhất 3 nữ. A. B. C. D. Câu 17.Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ ba có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa, tính xác suất để trong 7 hoa được chọn có số hoa hồng bằng số hoa ly. A. B. C. D. Câu 18. Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp, tính xác suất để 2 viên bi được lấy vừa khác màu vừa khác số. A. B. C. D. Câu 19. Trong một hộp có 50 viên bi được đánh số từ 1 đến 50. Chọn ngẫu nhiên 3 viên bi trong hộp, tính xác suất để tổng ba số trên 3 viên bi được chọn là một số chia hết cho 3. A. B. C. D. Câu 20.Cho tập hợp . Gọi là tập hợp các số tự nhiên có chữ số đôi một khác nhau được lập thành từ các chữ số của tập . Chọn ngẫu nhiên một số từ , tính xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ. A. B. C. D. Câu 21. CMột lớp học có 30 học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được 2 nam và 1 nữ là . Tính số học sinh nữ của lớp. A. B. C. D. Câu 22.Một chi đoàn có 3 đoàn viên nữ và một số đoàn viên nam. Cần lập một đội thanh niên tình nguyện (TNTN) gồm 4 người. Biết xác suất để trong 4 người được chọn có 3 nữ bằng lần xác suất 4 người được chọn toàn nam. Hỏi chi đoàn đó có bao nhiêu đoàn viên. A. B. C. D. TỰ LUẬN. I. PHƯƠNG TRÌNH LƯỢNG GIÁC : Câu 1. Giải các phương trình sau : 6
- a) d) b) e) c) f) Câu 2. Giải các phương trình sau : 1. 2sinx + 1 = 0 2. 4sin2x +2sin2x +2cos2x = 1 3. cos2xsin2x = 2cosx 4. 4sin( 2x + 150 ).cos( 2x + 150 ) = 1 5. cos2x – 3cosx + 2 = 0 6. 7. 8. 9. tan2x + cotx = 4cos2x 10. . 11. 12. II.HOÁN VỊ CHỈNH HỢP – TỔ HỢP XÁC SUẤT Bài 1: Một hộp đựng 7 quả cầu đỏ , sáu quả cầu xanh, Chọn ngẫu nhiên 5 quả . Tính xác suất để 5 quả chọn a. Có đúng hai quả đỏ b. Có ít nhất một quả xanh c. Có ít nhất hai quả đỏ và hai quả xanh Baøi 2:Moät hoäp ñöïng 9 theû ñaùnh soá töø 1 ñeán 9 ruùt ngaãu nhieân 5 theû .Tính xaùc suaát ñeå a. Caùc theû ghi soá 1, 2,3 ñöôïc ruùt b. Coù ñuùng moät trong ba theû ghi soá 1,2,3 ñöôïc ruùt c. Khoâng theû naøo ghi caùc soá 4,5,6 ñöôïc ruùt Baøi 3: Ttöôøng THPT coù 12 hs gioûi khoái 10 , 15 hoïc sinh gioûi khoái 11 vaø 17 hoïc sinh gioûi khoái 12 . Chọn ngẫu nhiên 4 học sinh . Tính xác suất để trong 4 học sinh được chọn a. Coù ñuû hoïc sinh caû ba khoái b. Coù nhieàu nhaát hai hoïc sinh khoái 10 Bài 4.Đội thanh niên xung kích của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ, sao cho 4 học sinh này thuộc không quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy? Bài 5.Từ một nhóm gồm 15 học sinh khối A, 10 học sinh khối B, 5 học sinh kh ối C, ch ọn ra 15 học sinh sao cho có ít nhất 5 học sinh khối A và đúng 2 học sinh khối C. Tính số cách chọn. Bài 6.Có bao nhiêu số tự nhiên gồm 5 chữ số, trong đó chữ số 0 có mặt đúng 2 lần, chữ số 1 có mặt đúng 1 lần và hai chữ số còn lại phân biệt? Bài 7.Cho 2 đường thẳng d1, d2 song song với nhau. Trên đường thẳng d1 cho 10 điểm phân biệt, trên đường thẳng d2 cho 8 điểm phân biệt. Hỏi có thể lập được bao nhiêu tam giác mà 3 đỉnh của mỗi tam giác lấy từ 18 điểm đã cho. B.HÌNH HỌC: I. PHÉP BIẾN HÌNH Câu 1: Trong mặt phẳng tọa độ Oxy cho đường tròn : x 2 + y 2 + 2x 6y = 0. Ảnh của qua phép vị tự tâm O , tỉ số k = . A. Đáp án khác. B. . C. . D. . Câu 2: Cho M(3; 1) Và I(1;2). Hỏi điểm nào trong các điểm sau là ảnh của M qua phép đối xứng tâm I 7
- A. S(5;4). B. N(2;1). C. P(1;3). D. Q(1;5 ). Câu 3: Cho hình vuông tâm O, có bao nhiêu phép quay tâm O góc , biến hình vuông thành chính nó: A. 2. B. 1. C. 4. D. 3. Câu 4: Cho hình bình hành ABCD, Khi đó : A. . B. . C. . D. . Câu 5: Trong các khẳng định sau khẳng định nào sai? A. Hai hình thoi luôn đồng dạng với nhau. B. Thực hiện liên tiếp hai phép đồng dạng thì được một phép đồng dạng C. Thực hiện liên tiếp phép vị tự và một phép dời hình thì được một phép đồng dạng D. Hai hình chữ nhật luôn đồng dạng với nhau. Câu 6: . Cho đường thẳng d:xy + 4= 0. Hỏi đường thẳng nào trong các đường thẳng sau có ảnh là d trong phép đối xứng tâm I(4;1)? A. x y +6= 0. B. xy+ 2 =0. C. xy10 = 0. D. x y 8=0. Câu 7: Trong các hình sau đây, hình nào không có tâm đối xứng ? A. Hình thoi. B. Tam giác đều. C. Lục giác đều. D. Hình chữ nhật. Câu 8: Qua phép tịnh tiến véc tơ , đường thẳng d có ảnh là đường thẳng d’, chọn khẳng định đúng A. d’ trùng với d khi d cắt đường thẳng chứa . B. d’ trùng với d khi d song song hoặc d trùng với giá . C. d’ trùng với d khi d song song với giá . D. d’ trùng với d khi d vuông góc với giá . Câu 9: Cho đường thẳng d: 3x y+1=0, đường thẳng nào trong các đường thẳng có phương trình sau ảnh của d qua phép quay tâm 0(0;0) góc quay 900 A. 2x+6y1=0. B. x+3y+1=0. C. 2x+6y+1=0. D. x+3y1=0. Câu 10: Tính chất nào sau đây không phải là tính chất của phép dời hình ? A. Biến đường tròn thành đường tròn bằng nó. B. Biến tam giác thành tam giác bằng nó, biến tia thành tia. C. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng bảo toàn thứ tự của ba điểm đó. D. Biến đoạn thẳng thành đoạn thẳng có độ dài gấp k lần đoạn thẳng ban đầu . Câu 11: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 2y – 2 = 0, Ảnh của đường tròn trên qua phép vị tự V(A, k) biết A(1, 2) và . A. . B. Đáp án khác. C. . D. . Câu 12: Cho tam giác ABC . Dựng về phía ngoài của tam giác đó các hình vuông ABDE và BCFK . Gọi M , N lần lượt là trung điểm AK và CD . A. Tam giác BMN là tam giác vuông cân. B. Tam giác BMN là tam giác thường C. Tam giác BMN là tam cân. D. Tam giác BMN là tam giác đều. Câu 13: Cho có . Phép tịnh tiến biến thành . Tọa độ trọng tâm của là A. . B. Đáp án khác. C. . D. . 8
- Câu 14: Trong mặt phẳng Oxy cho M(2;4) Hỏi phép vị tự tâm O tỉ số k= 2 biến M thành điểm nào sau đây. A. M’(4;8). B. M’(4;8). C. M’(4;8). D. M’(4;8). Câu 15: Cho ngũ giác đều ABCDE tâm O có các đỉnh kí hiệu theo chiều âm. Phép quay nào sau đây biến ngũ giác thành chính nó. A. . B. . C. . D. Cả A.B.C. đều sai. Câu 16: Trong các phép biến hình có được bằng cách thực hiện liên tiếp hai phép biến hình sau đây, phép nào không là phép dời hình. A. Phép đối xứng tâm và phép vị tự tỉ số . B. Phép quay và phép chiếu vuông góc lên một đường thẳng. C. Phép quay và phép tịnh tiến. D. Phép đối xứng trục và phép đối xứng tâm. Câu 17: Trong mặt phẳng Oxy, ảnh của điểm qua phép quay là A. . B. . C. . D. . Câu 18: Cho đường tròn (C) có phương trình (x2) +(y 2) =4. Phép đồng dạng là hợp thành của 2 2 phép Vị tự tâm O(0;0), tỉ số Và phép quay tâm O(0;0) góc quay 900 sẽ biến (C) thành đường tròn nào? A. (x1)2 +(y1)2 =16. B. (x+2)2 +(y1)2 =16. C. (x+4)2 +(y4)2 =16. D. (x2)2 +(y2)2 =16. Câu 19: ChoABC có trọng tâm G. (G) = M . Khi đó điểm M là A. M là trung điểm cạnh BC. B. M là đỉnh thứ tư của hình bình hành BGCM. C. M là đỉnh thứ tư của hình bình hành BCGM. D. M trùng với điểm A. Câu 20: Trong mp Oxy cho đường tròn (C) có pt . Hỏi phép vị tự tâm O tỉ số k=2 biến (C) thành đường tròn nào sau đây? Câu 21: Trong mp Oxy cho đường thẳng d có pt 2xy+1=0. Để phép tịnh tiến theo biến đt d thành chính nó thì phải là vecto nào sau đây? Câu 22: Trong mp Oxy chovà điểm A(4;5). Hỏi A là ảnh của điểm nào trong các điểm sau đây qua phép tịnh tiến ? A. (1;6). B.(2;4). C.(4;7). D.(3;1). II. HÌNH HỌC KHÔNG GIAN Câu 1: Cho hình chóp S.ABCD , đáy ABCD có AD cắt BC tại E. Gọi M là trung điểm của SA ,N=SD (BCM). Qua điểm N kẻ đường thẳng d song song với BD. Khi đó d cắt A. AB. B. SC. C. SB. D. SA. Câu 2: Phát biểu nào sau đây là sai? A. Hình chiếu song song của hai đường chéo nhau có thể là hai đường song song. B. Hình thang có thể là hình biểu diễn của một hình bình hành. C. Trọng tâm G của tam giác ABC có hình chiếu song song là trọng tâm G’ của tam giác A’B’C’, trong đó A’B’C’ là hình chiếu song song của tam giác ABC. 9
- D. Cả 3 câu trên đều sai. Câu 3: Cho tứ diện ABCD có trọng tâm G. M,N lần lượt là trung điểm của CD , AB . Khi đó BC và MN là hai đường thẳng A. chéo nhau. B. có hai điểm chung. C. song song. D. cắt nhau. Câu 4: Cho hình chóp S.ABCD , đáy ABCD là hình bình hành. Điểm M thuộc cạnh SC sao cho SM=3MC , N là giao điểm của SD và (MAB). Khi đó hai đường thẳng CD và MN là hai đường thẳng A. cắt nhau. B. chéo nhau. C. song song. D. có hai điểm chung. Câu 5: Cho tứ diện ABCD, M là trung điểm của AB, N là trung điểm của AC, P là trung điểm của AD.Đường thẳng MN song song với mặt phẳng nào trong các mặt phẳng sau đây? A. mặt phẳng (PCD). B. mặt phẳng (ABC). C. mặt phẳng (ABD). D. mặt phẳng (BCD). Câu 6: Cho hình chóp S.ABCD có đáy là hình bình hành. Một mp( ) cắt các cạnh SA,SB,SC,SD lần lượt tại các điểm A’,B’,C’,D’ sao cho tứ giác A’B’C’D’ cũng là hình bình hành. Qua S kẻ Sx,Sy lần lượt song song với AB,AD . Gọi O là giao điểm của AC và BD . Khi đó ta có A. Giao tuyến của (SAC) và (SB’D’) là đường thẳng Sx. B. Giao tuyến của (SB’D’) và (SAC) là đường thẳng SO. C. Giao tuyến của (SA’B’) và (SC’D’) là đường thẳng Sy. D. Giao tuyến của (SA’D’) và (SBC) là đường thẳng SO. Câu 7: Cho hình chóp S.ABCD. Gọi G,E lần lượt là trọng tâm các tam giác SAD và SCD . Lấy M,N lần lượt là trung điểm AB,BC . Khi đó ta có A. GE và MN trùng nhau. B. GE và MN chéo nhau. C. GE//MN. D. GE cắt BC. Câu 8: Cho hình chóp S. ABCD với ABCD là hình bình hành tâm O. Khi đó giao tuyến của hai mặt phẳng ( SAC) và (SBD) là A. SC. B. SB. C. SA. D. SO. Câu 9: Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD . Gọi d là giao tuyến của hai mp (ASB) và (SCD) . Mệnh đề nào sau đây là đúng? A. d//AB. B. d cắt AB. C. d cắt AD. D. d cắt CD. Câu 10: Phát biểu nào sau đây là đúng? A. Nếu 3 mặt phẳng phân biệt đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến đó hoặc đồng quy hoặc đôi một song song với nhau. B. Nếu 3 mặt phẳng phân biệt đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến đó hoặc đồng quy . C. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến đó hoặc đồng quy hoặc đôi một song song với nhau. D. Cả A, B, C đều sai. Câu 11: Cho tứ diện ABCD , M là trung điểm của cạnh CD ,G là trọng tâm tứ diện. Khi đó hai đường thẳng AD và GM là hai đường thẳng A. chéo nhau. B. có hai điểm chung. C. song song . D. có một điểm chung. Câu 12: Các yếu tố nào sau đây xác định một mặt phẳng duy nhất ? A. Một điểm và một đường thẳng. B. Hai đường thẳng cắt nhau. C. Ba điểm. D. Bốn điểm. 10
- Câu 13: Trên hình vẽ ta có hai mp ( ) và ( ) cắt nhau theo giao tuyến . Hai đường thẳng d và d’ cắt các mp đó tại các điểm M,N và M’,N’. Mệnh đề nào sau đây là đúng? A. d và d’ chéo nhau. B. d và d’ cắt nhau. C. d và d’ song song. D. Có thể xảy ra cả 3TH. Câu 14: Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai đường thẳng không có điểm chung thì song song. B. Hai đường thẳng không cùng nằm trên một mặt phẳng thì chéo nhau. C. Hai đường thẳng không cắt nhau thì song song. D. Hai đường thẳng không có điểm chung thì chéo nhau. Câu 15: Cho tứ diện ABCD . Gọi M,N là trọng tâm của tam giác ABC và ACD . Khi đó ta có A. MN cắt AD. B. MN//CD. C. MN cắt BC. D. MN//BD. Câu 16: Cho hình chóp S.ABCD đáy ABCD là hình bình hành. Mp( ) qua AB và cắt cạnh SC tại M ở giữa S và C . Khi đó, giao tuyến của mp( ) và (SCD) là A. đường thẳng qua M song song với AC. B. đường thẳng qua M song song với CD. C. MA. D. MD. Câu 17: Cho tứ diện ABCD , M là trung điểm cạnh AC . N là điểm thuộc cạnh AD sao cho ND=2AN. O là một điểm thuộc miền trong của tam giác BCD . Khi đó AB và MN là hai đường thẳng A. có hai điểm chung. B. song song. C. cắt nhau. D. chéo nhau. Câu 18: Cho hình chóp SABCD. Đáy ABCD là hình bình hành. Giả sử M thuộc đoạn SB.Mặt phẳng (ADM) cắt hình chóp SABCD theo thiết diện là A. hình bình hành. B. hình tam giác. C. hình thang. D. hình chữ nhật. Câu 19: Cho hình chóp S.ABCD , đáy ABCD có AD cắt BC tại E. Gọi M là trung điểm của SA ,N=SD (BCM). Khi đó ba đường thẳng nào đồng quy? A. MN, DC, AB. B. NB, MC, AD. C. MN, AD, BC. D. AD, SC, BN. Câu 20: Trong các mệnh đề sau mệnh đề nào sai ? A. Dùng nét đứt để biểu diễn cho đường bị che khuất. B. Hình biểu diễn của đường thẳng là đường thẳng. C. Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng. D. Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau. Câu 21: Cho tam giác ABC. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác ABC? A. 4. B. 3. C. 1. D. 2. 11
- Câu 22: Cho 4 điểm A,B,C,D không đồng . Gọi M, N lần lượt là trung điểm của AC và BC. Trên BC lấy điểm P sao cho BP = 2 PD. Gọi Q là giao điểm của CD và NP . Khi đó giao tuyến của hai mặt phẳng (MNP) và (ACD) là ? A. MP. B. MQ. C. CQ. D. NQ. Câu 23: Cho hình chóp S.ABCD đáy ABCD là hình thang (BC//AD). Điểm M thuộc cạnh SD sao cho 2SM=MD ; N là giao điểm của SA và (MBC) . Khi đó xác định điểm M bằng cách A. lấy giao điểm của SA với đường thẳng qua M song song với AD. B. lấy giao điểm của SA với đường thẳng qua M song song với AC. C. lấy giao điểm của SA với đường thẳng qua M song song với DB. D. lấy điểm bất kì trên SA. Câu 24: Cho tam giác OAB vuông tại O, C là trung điểm cua OB và một điểm D ở ngoài mp chứa tam giác sao cho OD vuông góc với AC . Một mp ( ) song song với AC và OD cắt OA,AD,DB và OB lần lượt tại M, N, R, S. Tứ giác MNRS là hình gì? A. hình thang cân. B. hình chữ nhật. C. hình bình hành. D. hình thang vuông. Câu 25: Cho tứ diện ABCD , M là trung điểm của cạnh CD ,G là trọng tâm tứ diện. Khi đó giao điểm của GM và (ADB) thuộc đường thẳng A. AB. B. DB. C. AD . D. AI, với I là trung điểm của DB. Câu 26: Trong các mệnh đề sau, mệnh đề nào sai? A. Nếu hai mặt phẳng có một điểm chung thì chúng sẽ có một đường thẳng chung đi qua điểm chung ấy. B. Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau C. Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau cho trước. D. Ba điểm không thẳng hàng cùng thuộc một mặt phẵng duy nhất. Câu 27: Cho tứ diện ABCD . Gọi M là trung điểm của cạnh AC , N là điểm thuộc cạnh AD sao cho AN = 2ND . O là một điểm thuộc miền trong của tam giác BCD . Mệnh đề nào sau đây là mệnh đề đúng? A. mp(OMN) đi qua giao điểm của hai đường thẳng MN và CD. B. mp(OMN) chứa đường thẳng AB. C. mp(OMN) đi qua điểm A. D. mp(OMN) chứa đường thẳng CD. Câu 28: Cho điểm A thuộc mặt phẳng (P), mệnh đề nào sau đây đúng : A. . B. . C. . D. . Câu 29: Cho tứ diện ABCD và các điểm M,M’ thuộc cạnh AB; các điểm N,N’ thuộc cạnh CD . Trong các mệnh đề sau đây, mệnh đề nào đúng? A. MN và M’N’ song song. B. MN và M’N’ chéo nhau. C. Có thể xảy ra cả 3 trường hợp đó. D. MN và M’N’ cắt nhau. Câu 30: Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn là CD . Gọi M là trung điểm của SA, N là giao điểm của SB và mp(MDC). Mệnh đề nào sau đây là mệnh đề đúng? A. MN//DC. B. MN và DC chéo nhau . C. MN cắt SC. D. MN cắt SD. 12
- Câu 31: Cho tứ diện ABCD ,điểm M thuộc cạnh AB ( khác với A và B). Cắt tứ diện đã cho bới mp(P) đi qua M và song song với 2 cạnh AC , BD của tứ diện. Khi đó thiết diện cần tìm là (câu nào đúng nhất) A. hình tam giác. B. hình tứ giác. C. hình thang. D. hình bình hành. Câu 32: Cho tứ diện ABCD, M là trung điểm của AB, N là điểm trên AC mà , P là điểm trên đoạn AD mà . Gọi E là giao điểm của MP và BD, F là giao điểm của MN và BC. Khi đó giao tuyến của (BCD) và (BCD) là A. NE. B. ME. C. NE. D. EF. Câu 33: Trong mặt phẳng , cho hình bình hành ABCD tâm O, S là một điểm không thuộc . Gọi M,N, P lần lượt là trung điểm của BC, CD và SO. Đường thẳng MN cắt AB, AC và AD tạ M 1, N1 và O1. Nối O1P cắt SA tại P1, nối M1P1 cắt SB tại M2, nối N1P1 cắt SD tại N2. Khi đó giao tuyến của ( MNP) với (SAD) là ? A. P1N1. B. P1N2. C. MN2. D. PN2. Câu 34: Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai đường thẳng không có điểm chung thì chéo nhau. B. Hai đường thẳng không cắt nhau thì song song. C. Hai đường thẳng không nằm trên cùng một mặt phẳng thì chéo nhau. D. Hai đường thẳng không có điểm chung thì song song với nhau. Câu 35: Cho tứ diện ABCD cótrọng tâm G. M,N lần lượt là trung điểm của CD , AB . Khi đó điểm G thuộc mp: A. (BCM). B. (ACD). C. (ABD). D. (CDN). TỰ LUẬN . Bài 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, O là tâm của hình bình hành. Gọi M là trung điểm của cạnh SB, N là điểm trên cạnh BC sao cho BN = 2CN. 1. Xác định giao tuyến d của hai mặt phẳng (MBD) và (MAC). Chứng tỏ d // mp(SCD) . 2. Xác định giao tuyến của (SCD) và (AMN). 3. Xác định thiết diện mặt phẳng (MAD) cắt chóp S.ABCD Bài 2: Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC. 1.Tìm giao tuyến của hai mặt phẳng : (SAD) và (SBC). 2.Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN). 3.Tìm thiết diện của hình chóp cắt bởi mặt phẳng (AMN). Bài 3: :Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O .Gọi M, N lần lượt trung điểm BC, CD. 1. Tìm giao tuyến các cặp mp ( SAC ) và (SBD) , ( SBD) và (SMN) 2.Gọi G1 , G2 lần lượt trọng tâm các tam giác SBC và SCD . Chứng minh rằng G1G2// ( ABCD) và G1G2// ( SBD) 3. Tìm giao điểm của SC với mp (A G1G2) 4. Xác định thiết diện mp (A G1G2) cắt chóp S.ABCD Bài 4: Cho hình chóp S.ABCD có đáy ABCD là hình thang với hai đáy AD và BC , G là trọng tâm tam giác SCD . 1. Tìm giao tuyến các cặp mp (SAD ) và (SBC) ; ( SBD) và (SAG) 2. Tìm giao điểm của BG với mp(SAC) 3. M là một điểm trên cạnh SB sao cho SM=2MB . CMR MG//(ABCD) 13
- 4. Xác định thiết diện mp(ABG) cắt S.ABCD Baøi 5: Cho hình choùp S.ABCD. Trong ∆SBC laáy moät ñieåm M. Trong ∆SCD laáy moät ñieåm N. 1. Tìm giao ñieåm cuûa MN vaø (SAC). 2.Tìm giao ñieåm cuûa SC vôùi (AMN). 3. Tìm thieát dieän cuûa hình choùp S.ABCD vôùi maët phaúng (AMN). Bài 6: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm AB, G là trọng tâm tam giác SAB và M là điểm trong đoạn AD sao cho AD = 3AM. 1.Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). 2. Đường thẳng qua M và song song AB cắt CI tại N. Chứng minh NG//(SCD). 3. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (CMG). Bài 7: Cho hình chóp S.ABCD với ABCD là hình thang đáy lớn AD. 1. Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD). 2. Gọi M là trung điểm của BC, mặt phẳng (P) qua M và song song với hai đường thẳng SA và CD. Xác định thiết diện của mặt phẳng (P) với hình chóp đã cho. 14
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề cương ôn tập học kì 1 môn Tiếng Anh 11 năm 2019-2020 - Trường THPT chuyên Bảo Lộc (Chương trình thí điểm)
17 p | 141 | 8
-
Đề cương ôn tập học kì 1 môn Tiếng Anh 9 năm 2018-2019 - Trường THCS Chương Dương
5 p | 76 | 7
-
Đề cương ôn tập học kì 1 môn Địa lí 11 năm 2019-2020 - Trường THPT Đức Trọng
12 p | 125 | 4
-
Đề cương ôn tập học kì 1 môn Tiếng Anh 11 năm 2019-2020 - Trường THPT Xuân Đỉnh (Chương trình mới)
9 p | 78 | 4
-
Đề cương ôn tập học kì 1 môn Ngữ văn 9 năm 2017-2018 - Trường THCS Long Toàn
13 p | 66 | 3
-
Đề cương ôn tập học kì 2 môn Vật lí 10 năm 2018-2019 - Trường THPT Yên Hòa
13 p | 137 | 3
-
Đề cương ôn tập học kì 1 môn Toán 6 năm 2018-2019 - Trường THCS Chương Dương
5 p | 83 | 3
-
Đề cương ôn tập học kì 1 môn Vật lí 10 năm 2018-2019 - Trường THPT Yên Hòa
13 p | 44 | 3
-
Đề cương ôn tập học kì 1 môn Tiếng Anh 12 năm 2019-2020 - Trường THPT chuyên Bảo Lộc (Chương trình thí điểm)
3 p | 66 | 3
-
Đề cương ôn tập học kì 1 môn Vật lí 11 năm 2018-2019 - Trường THPT Yên Hòa
16 p | 112 | 2
-
Đề cương ôn tập học kì 1 môn Hóa học 10 năm 2019-2020 - Trường THPT Xuân Đỉnh
6 p | 128 | 2
-
Đề cương ôn tập học kì 1 môn Lịch sử 12 năm 2018-2019 - Trường THPT chuyên Bảo Lộc
1 p | 60 | 2
-
Đề cương ôn tập học kì 1 môn Lịch sử 8 năm 2018-2019 - Trường THCS Chương Dương
2 p | 36 | 2
-
Đề cương ôn tập học kì 1 môn GDCD 7 năm 2019-2020 - Trường THCS Long Toàn
1 p | 54 | 2
-
Đề cương ôn tập học kì 1 môn Địa lí 7 năm 2018-2019 - Phòng GD&ĐT Quận 1
2 p | 51 | 2
-
Đề cương ôn tập học kì 2 môn Tiếng Anh 11 năm 2018-2019 - Trường THPT chuyên Bảo Lộc
15 p | 107 | 2
-
Đề cương ôn tập học kì 1 môn Toán 10 năm 2018-2019 - Trường THPT Yên Hòa
29 p | 47 | 2
-
Đề cương ôn tập học kì 1 môn Vật lí 12 năm 2019-2020 - Trường THPT Yên Hòa
45 p | 40 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn