Đề khảo sát chất lượng HSG năm học 2014 - 2015 môn Toán lớp 11
lượt xem 30
download
Mời các bạn tham khảo Đề khảo sát chất lượng HSG năm học 2014 - 2015 môn Toán lớp 11 sau đây để biết được cấu trúc đề thi cũng như những dạng bài chính được đưa ra trong đề thi. Từ đó, giúp các bạn có kế hoạch học tập và ôn thi hiệu quả.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề khảo sát chất lượng HSG năm học 2014 - 2015 môn Toán lớp 11
- SỞ GD & ĐT NGHỆ AN ĐỀ KHẢO SÁT CHẤT LƯỢNG HSG MÔN TOÁN LỚP 11 TRƯỜNG THPT DIỄN CHÂU 2 NĂM HỌC 2014 2015 Thời gian: 150 phút (Không kể thời gian giao đề) ĐỀ THI THỬ GV ra đề: Nguyễn Văn Minh Câu 1 (6,0 điểm). � 3π � � π� a) Giải phương trình : 2 2 cos 2 x + sin 2 x cos �x + �− 4sin �x + �= 0 � 4 � � 4� x+ y + x− y = 2 b) Giải hệ phương trình sau: , ∀x, y R y + x − y − x =1 Câu 2 (5,0 điểm). a) Cho tập A là tập hợp các số tự nhiên có hai chữ số khác nhau được lập từ tập E={1;2;3;4;5;6}; chọn ngẩu nhiên hai số từ tập A. Tính xác suất để hai số được chọn thỏa mãn có các chữ số đôi một khác nhau và có tổng bằng 18. u1 = 2015 b) Cho dãy số ( un ) xác định như sau: 3un .Tìm lim un ? un +1 = , ∀n 1 un + 2 Câu 3 (4,0 điểm). Cho tứ diện đều ABCD cạnh a . Gọi I, J lần lượt là trọng tâm các tam giác ABC và DBC. Mặt phẳng (α ) qua IJ cắt các cạnh AB, AC, DC, DB lần lượt tại các điểm M, N, P, Q với AM = x , AN = y ( 0 < x < y < a ). a) Chứng minh MN, PQ, BC đồng qui và MNPQ là hình thang cân. b) Tính diện tích tứ giác MNPQ theo a , x và y. Câu 4 (3,0 điểm). Trong mặt phẳng Oxy, cho đường thẳng d : x − y = 0 và đường tròn ( C ) : ( x − 1) + ( y + 4 ) = 5 . M là điểm thuộc d, qua M kẻ hai tiếp tuyến MA, MB 2 2 đến (C) (A, B là các tiếp điểm) và cát tuyến MCD đến đường tròn (C) với C nằm 5 giữa M và D; AB cắt CD tại N. Tìm tọa độ điểm M biết rằng CD=1 và ND = . 9 Câu 5 (2,0 điểm). Cho tam giác ABC không có góc nào tù. Chứng minh rằng : A B C A B C 10 3 tan + tan + tan + tan .tan .tan . Dấu bằng xãy ra khi nào ? 2 2 2 2 2 2 9 ................................ Hết .................................... Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm Họ tên thí sinh: ...................................................................................... SBD: ....................
- x 0 y 0 *Điều kiện: x− y 0 y− x 0 *Hai vế của PT của hệ không âm,bình phương 2vế ta được: x2 − y = 2 − x 2 y2 − x = 2 y −1 x 2 y 1/ 2 4x − y − 4 = 0 4x − 4 y +1 = 0 x = 17 /12 là nghiệm của hệ y = 5/3 Gi ải: A D K N C M I B + Gọi K trung điểm DC khi đó IK vuông góc DC. Mà IA vuông góc MA suy ra đường tròn đường kính MI đi qua I,K.A,B. (Kí hiệu là đtròn (T)) 5 4 1 4 1 + CD = 1, DN = � NC = , NK = − = . . Đương tròn ( C) Tâm I(1.4) , R2=5. 9 9 2 9 18 N là điểm trong ( C) ta có: ND.NC=NA.NB=20/81 . Tương tự vì N trong (T) : NK.NM=NA.NB=20/81 40 Suy ra NM = . Trong bài toán này điểm I cố định, nếu ta tính được IM thì điểm M cần tìm là 9 giao của đường thẳng (d) với đường tròn bán kính IM. Vấn đề tính IM ? + Sử dụng định lý hs cos cho tam giác INM ta có: ᄋ IM 2 = IN 2 + NM 2 − 2 IN .NM . cos ( INM ᄋ ) (*) ) = IN 2 + NM 2 + 2 IN .NM .cos ( INK ᄋ Lưu ý rằng cos ( INM ᄋ ) = −cos (ᄋINK ) = − KN , thay vào (*) ta có: ) = cos (π − INK IN
- 385 1600 40 2025 IM2=IN2+NM2+2NK.NM= + + = = 25 .Vậy IM = 5. 81 81 81 81 Công việc còn lại là tìm giao của đường tròn ( I;5) và (d) cho ta 2 điểm M cần tìm là ( 1;1) và (4; 4). ui +1 = 1 + u1u2 ...ui ∀i 1 � ui +1 − 1 = ui (ui − 1) � ui > 1 ∀i �1, ui +1 > 1 + u1 ∀i �1 1 1 1 1 1 1 = − � = − ui +1 − 1 ui − 1 ui ui ui − 1 ui +1 − 1 1 1 Sn = + ... + u1 un 1 1 1 1 1 2 1 = + − + ... + − = − u1 u2 − 1 u3 − 1 un − 1 un +1 − 1 u1 un +1 − 1 un +1 − 1 = u1u2 ...un > u1 (1 + u1 ) n −1 = 2014.2015n −1 1 1 0< < un +1 − 1 2014.2015n −1 1 1 lim =0 lim n + 2014.2015n −1 n + un +1 − 1 2 1 lim sn = = . n + u1 1007
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi KSCL đội tuyển HSG môn tiếng Anh lớp 12 năm 2017-2018 - Sở GD&ĐT Vĩnh Phúc
9 p | 183 | 41
-
Đề thi khảo sát chất lượng HSG Toán 7 đợt 1
1 p | 284 | 36
-
ĐỀ KHẢO SÁT CHẤT LƯỢNG HSG LỚP 9 LẦN 2 MÔN VẬT LÍ – NĂM HỌC 2011- 2012
4 p | 234 | 35
-
Đề thi khảo sát chất lượng HSG năm học 2014 - 2015 môn Toán 10
1 p | 188 | 29
-
Đề thi khảo sát chất lượng HSG môn Toán lớp 8 năm 2015-2016 - Phòng GD&ĐT Ý Yên
5 p | 394 | 20
-
Đề thi KSCL đội tuyển HSG môn Ngữ Văn lớp 12 năm 2017-2018 - Sở GD&ĐT Vĩnh Phúc
5 p | 355 | 20
-
Đề thi KSCL đội tuyển HSG môn Lịch sử lớp 12 năm 2017-2018 - Sở GD&ĐT Vĩnh Phúc
10 p | 249 | 17
-
Đề thi KSCL đội tuyển HSG môn Hóa học lớp 12 năm 2017-2018 - Sở GD&ĐT Vĩnh Phúc
6 p | 108 | 11
-
Đề khảo sát chất lượng lần 3 môn Ngữ văn lớp 11 năm 2017 - THPT Đồng Đầu - Mã đề 217
9 p | 342 | 7
-
Đề thi KSCL đội tuyển HSG môn Sinh học lớp 12 năm 2017-2018 - Sở GD&ĐT Vĩnh Phúc
8 p | 93 | 5
-
Đề thi KSCL học sinh giỏi môn Sinh học lớp 8 năm 2020-2021 có đáp án - Trường THCS Liên Châu (Lần 1)
3 p | 70 | 5
-
Đề thi KSCL học sinh giỏi môn Toán lớp 7 năm 2020-2021 có đáp án - Trường THCS Liên Châu (Lần 1)
5 p | 84 | 5
-
Đề thi khảo sát chất lượng đội tuyển HSG môn Hóa học lớp 12 (Lần 1)
6 p | 13 | 5
-
Đề thi khảo sát chất lượng học sinh giỏi Toán lớp 6 năm 2021-2022 có đáp án - Phòng GD&ĐT Diễn Châu
4 p | 35 | 4
-
Đề thi khảo sát chất lượng đội tuyển HSG môn Toán lớp 10 (Lần 1)
4 p | 21 | 4
-
Đề thi KSCL đội tuyển HSG môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Vĩnh Phúc
7 p | 77 | 4
-
Đề thi khảo sát chất lượng học sinh giỏi Toán lớp 6 năm 2022 có đáp án - Phòng GD&ĐT huyện Hậu Lộc
5 p | 41 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn