intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề kiểm tra 45 phút Hình học 11 chương 3 (Kèm đáp án)

Chia sẻ: Phạm Vũ Nam | Ngày: | Loại File: DOC | Số trang:3

1.968
lượt xem
405
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề kiểm tra 45 phút Hình học 11 chương 3 nhằm giúp học sinh nắm được các định nghĩa đường thẳng vuông góc với mặt phẳng, đường thẳng vuông góc với đường thẳng và góc giữa đường thẳng với mặt phẳng. Nắm được phương pháp chứng minh đường thẳng vuông góc với mặt phẳng, đường thẳng vuông góc với đường thẳng.

Chủ đề:
Lưu

Nội dung Text: Đề kiểm tra 45 phút Hình học 11 chương 3 (Kèm đáp án)

  1. Tiết 39 Tuần 32 Ngày soạn: 28/03/2014 KIỂM TRA 45’. A. MỤC TIÊU 1. Kiến thức: - Nắm được các định nghĩa đường thẳng vuông góc với mặt phẳng, đường thẳng vuông góc với đường thẳng và góc giữa đường thẳng với mặt phẳng. - Nắm được phương pháp chứng minh đường thẳng vuông góc với mặt phẳng, đường thẳng vuông góc với đường thẳng. 2. Kỹ năng: - Chứng minh được đường thẳng vuông góc với mặt phẳng, đường thẳng vuông góc với đường thẳng. - Xác định được góc giữa đường thẳng và mặt phẳng. 3. Thái độ: - Nghiêm túc làm bài. B. Biên soạn đề kiểm tra 1.Ma trận nhận thức Tầm Chủ đề hoặc mạch kiến thức, kỹ Tổng quan Trọng số năng điểm trọng 1.Chứng minh một đường thẳng 25 2 vuông góc với một mặt phẳng. 50 2. Tính góc giữa hai đường thẳng. 25 2 50 3. Chứng minh hai đường thẳng 25 2 vuông góc. 50 4.Tính góc giữa đường thẳng và mặt 25 3 phẳng. 75 100% 225 2. Ma trận đề Mức độ nhận thức – Hình thức câu hỏi Tổng Chủ đề hoặc mạch 1 2 3 4 điểm/ kiến thức, kỹ năng 10 TL TL TL TL 1.Chứng minh một Câu 1a 1
  2. đường thẳng vuông góc 1,0 2,5 với một mặt phẳng. 2. Tính góc giữa hai Câu 1b 1 đường thẳng. 1,0 2,5 3. Chứng minh hai Câu 1c 1 đường thẳng vuông góc. 1,0 2,5 4.Tính góc giữa đường Câu 1d 1 thẳng và mặt phẳng. 1,0 2,5 10,0 3.Diễn giải: ĐỀ BÀI a) (2.5 điểm)Chứng minh một đường thẳng vuông góc với một mặt phẳng. b) (2.5 điểm) Tính góc giữa hai đường thẳng. c) (2.5 điểm)Chứng minh hai đường thẳng vuông góc. d) (2.5 điểm)Tính góc giữa đường thẳng và mặt phẳng. ĐỀ BÀI Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) và đáy ABCD là một hình vuông tâm O với SA=AB=a. Câu 1 (2,5 điểm). Chứng minh BD vuông góc với mặt phẳng (SAC). Câu 2 (2,5 điểm). Tính góc giữa SC và AD Câu 3 (2,5 điểm). Gọi H là hình chiếu vuông góc của O lên đường thẳng SC. Xác định và tính số đo của góc giữa đường thẳng BH và mặt phẳng (SAC). Câu 4 (2,5 điểm). Gọi E là trung điểm SB, chứng minh AE vuông góc với SC ĐÁP ÁN Nội dung Điểm Câu 1 (2,5 điểm). S E H A D O B C
  3. Hình vẽ (chưa có BH, DH và OH) 0,5 Vì SA ⊥(ABCD) nên SA ⊥BD (1) 0,5 Vì ABCD là một hình vuông nên AC ⊥BD (2) 0,5 SA và AC cắt nhau trong mp(SAC) (3) 0,5 Từ (1), (2),(3) ⇒ BD⊥(SAC) 0,5 Câu 2 (2,5 điểm). - Chỉ ra tam giác SBC vuông tại B 1,0 -Vì BC // AD nên góc giữa AD và SC bằng góc giữa BC và SC và bằng 0,5 · góc SCB SB a 2 1,0 · - Ta có: tan SCB = = = 2 BC a Câu 3 (2,5 điểm). Vì BD⊥(SAC) và OH⊂(SAC) nên BD⊥OH ⇒ Tam giác OBH vuông tại O và OH là hình chiếu vuông góc của BH lên 0,5 · mp(SAC) ⇒ góc nhọn BHO là góc giữa BH và mp(SAC) 0,5 Vì SA⊥(ABCD) nên SA⊥AC⇒ Tam giác SAC vuông tại A có: SA=a và AC= a 2 ⇒SC = SA 2 + AC2 = a 3 a 2 0,5 ∆OHC đồng dạng với ∆SAC nên: OH OC a 2 = ⇒ OH = 2 .a = SA SC a 3 2 3 a 2 0,5 · BO Tam giác OBH vuông tại O có: tan BHO = = 2 = 3 ⇒BHO =600 · OH a 2 2 3 · 0,5 Vậy góc giữa đường thẳng BH và mặt phẳng (SAC) là BHO =600 Câu 4 (2,5 điểm). - Chỉ ra AE vuông góc với SB (4) 0,5 - Chỉ ra BC vuông góc với AE (5) 0,5 - BC và SB cắt nhau trong mp(SBC) (6) 0,5 Từ (4),(5),(6) suy ra AE vuông góc mp(SBC) 0,5 Do đó AE vuông góc với SC 0,5
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2