intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề kiểm tra HK 1 môn Toán lớp 12 năm 2017 - Sở GD&ĐT Quảng Nam - Mã đề 018

Chia sẻ: Ngô Văn Trung | Ngày: | Loại File: DOC | Số trang:5

17
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nhằm giúp cho học sinh ôn tập, luyện tập và vận dụng các kiến thức vào việc giải các bài tập được tốt hơn mời các bạn tham khảo Đề kiểm tra HK 1 môn Toán lớp 12 năm 2017 - Sở GD&ĐT Quảng Nam - Mã đề 018 dưới đây.

Chủ đề:
Lưu

Nội dung Text: Đề kiểm tra HK 1 môn Toán lớp 12 năm 2017 - Sở GD&ĐT Quảng Nam - Mã đề 018

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KIỂM TRA HỌC KỲ I – NĂM HỌC 2016­2017 QUẢNG NAM Môn: TOÁN – Lớp 12 ĐỀ CHÍNH THỨC Thời gian: 90 phút, không kể thời gian phát đề Mã đề 018 (Đề có 04 trang) I. PHẦN TRẮC NGHIỆM KHÁCH QUAN: (8 điểm) Câu 1. Cho  a > 0, a 1, b > 0, c > 0 . Đẳng thức nào sau đây đúng? �b � �b � log a b A.  log a � �= log a b − log a c .  B.  log a � �= . �c � �c � log a c     C.  log a ( bc ) = log a b − log a c .  D.  log a ( bc ) = log a b.log a c . Câu 2. Tìm tập xác định D  của hàm số  y = log 2 x − 3 . A.  D  =  ( 3 ; + ). B. D  =  [ 3 ; + ). C. D  =  ( 0 ; + ). D. D =  ᄀ . 3 4 Câu 3. Cho biểu thức  a 2 . a3  (với  a > 0 ). Hãy rút gọn biểu thức  P  và đưa về dạng lũy thừa với  P= 2 a số mũ hữu tỉ. 29 5 1 17 A.  . B.  . C.  . D.  .  P =a6 P = a6 P = a4 P =a4 x−1 1� Câu 4. Giải bất phương trình   ��� 9. �3 � A.  x 3 . B.  x 3 . C.  x −1 . D.  x −1 . Câu 5. Phương trình tiếp tuyến của đồ thị hàm số  y = ln(2 x)  tại điểm  A(2; 2 ln 2)  là: 1 1 1 1 1 1 A. y = x − 1 + 2 ln 2 . B. y = x − 1 − 2 ln 2 . C.  y = x − + 2 ln 2 . D.  y = x − − 2 ln 2 . 2 2 4 2 4 2 1 Câu 6.  Cho  a > 0, a 1 . Tính   log a 3 .  a 1 1 1 1 1 1 A.  log a 3 = 3 . B.  log a 3 = . C.  log a 3 = −3 . D.  log a 3 = − . a a 3 a a 3 Câu 7. Tính đạo hàm  y /  của hàm số  y = 23 x −1 . 3 x −1 3 x −1 A.  y / = 3.2 . B.  y / = 2 . C.  y / = 3.23 x −1.ln 2 . D.  y / = 23 x−1.ln 2 . ln 2 ln 2 Câu 8. Tính  x  theo  a , biết  82 x−a = 4 . 1+ a 3 + 2a 1 + 3a 2 + 3a A.  x = .   B.  x = . C.   x = .  D.  x = .  2 4 6 6 Câu 9. Biết rằng phương trình  log3 ( x 2 + 2016 x) = 2017  có 2 nghiệm  x1, x2 . Tính tổng  x1 + x2 . A.   x1 + x2 = 2016 . B.   x1 + x2 = −2016 . C.   x1 + x2 = −32017 . D.   x1 + x2 = −20173 . Câu 10. Giải bất phương trình   log3 ( x − 1) < 2 . A. 1 < x < 10 . B. 1 < x < 9 . C.  x < 10 . D.  x < 9 . Câu 11. Tìm tập nghiệm  S  của bất phương trình  log 2 x < log 4 (3 − x) + 1 . A.  S = (−6; 2) . B.  S = (0;6) . C.  S = (0;3) . D.  S = (0; 2) . �a � Câu 12. Cho  log a b = −3 . Tính  log ab � �. �b � �a � 1 �a � 1 �a � �a � A.  log ab � �= .  B.  log ab � �= − .    C.  log ab � �= 2 .  D.  log ab � �= −2 . �b � 2 �b � 2 �b � �b � Mã đề 018 Trang 1/4
  2. Câu 13. Cho  log a π > 0  và  log a b < 0 . Khẳng định nào sau đây đúng? A.  a > 1 và b > 1. B.  a > 1 và 0 
  3. A.   m = 1 .  B.  m = −3 .    C.  m = −1  hoặc  m = 3 .  D.  m = −3  hoặc  m = 1 .  Câu   23.  Tìm   tất   cả   các  giá   trị   của   tham   số   m   để   đường  thẳng  y = − x + m   cắt   đồ   thị   hàm   số  2x +1 y=  tại hai điểm phân biệt. x A.   m < 0  hoặc  m > 4 .  B.   0 < m < 4 .   C.   m < −4  hoặc  m > 0 .  D.  −4 < m < 0 . Câu   24.  Đồ   thị   ở   hình   bên   là   đồ   thị   của   hàm   số  y y = − x3 + 3 x 2 − 2 . Tìm tất cả  các giá trị  của tham số   m   để  2 phương trình  − x3 + 3 x 2 − 2 = m  có đúng hai nghiệm. A.  m = −2 . B.  m = 2 .  O 2 x C.  m = 2 . D.  −2 < m < 2 . 2 Câu 25. Cho hàm số  y = f ( x)  có  lim+ f ( x) = +  và  lim− f ( x) = 0 . Mệnh đề nào sau đây đúng? x 2 x 2 A.  Đồ thị hàm số  y = f ( x)  không có tiệm cận đứng. B.  Đường thẳng  x = 2  không phải là tiệm cận của đồ thị hàm số  y = f ( x) . C.  Đường thẳng  x = 2  là tiệm cận ngang của đồ thị hàm số  y = f ( x) . D.  Đường thẳng  x = 2  là tiệm cận đứng của đồ thị hàm số  y = f ( x) . 8 Câu 26. Cho hàm số  y = . Mệnh đề nào sau đây đúng? 3 − 2x A. Đồ thị hàm số đã cho không có tiệm cận ngang. B. Đường thẳng  y = 0  là tiệm cận ngang của đồ thị hàm số đã cho. 8 C. Đường thẳng  y =  là tiệm cận ngang của đồ thị hàm số đã cho. 3 D. Đường thẳng  y = −4  là tiệm cận ngang của đồ thị hàm số đã cho. Câu 27. Tìm giá trị nhỏ nhất của hàm số  y = x 4 − 2 x 2 − 5  trên đoạn [2 ; 4]. A.   min y = −6 .  B.   min y = −5 . C.   min y = 2. D.   min y =3. [2;4] [2;4] [2;4] [2;4] Câu 28. Tính thể tích  V  của khối nón có bán kính đáy  r = 6  và chiều cao bằng  h = 4 . A.  V = 144π . B.  V = 96π . C.  V = 48π . D.  V = 32π . Câu 29. Người ta bỏ vào một cái thùng hình trụ có bán kính đáy bằng  16 cm , chiều cao bằng  30 cm   một quả cầu sắt có bán kính  12 cm  rồi đổ nước đầy thùng. Tính thể tích  V  của nước trong thùng (giá  trị gần đúng của  V  làm tròn đến hàng đơn vị). A.  V 22317 cm3 . B.  V 16889 cm3 . C.  V 6233 cm3 .   D.  V 2413 cm3 . Câu 30. Cho hình nón có bán kính đáy  r , chiều cao  h  và độ  dài đường sinh bằng  l . Tính diện tích  xung quanh  S xq  của hình nón đó. A.  S xq = 2π .r.l . B.  S xq = π .r.l . C.  S xq = 2π .r.h . D.  S xq = π .r.h . Câu 31. Trong tất cả các khối trụ có cùng diện tích toàn phần  Stp = 12π , hãy tìm bán kính đáy  r  của  khối trụ có thể tích lớn nhất. 2 1 A.  r = 2 . B.  r = .   C.  r = 2 .   D.  r = . 2 2 Câu 32. Một hình trụ có bán kính đáy  r , chiều cao  h  và có diện tích toàn phần bằng ba lần diện tích   r xung quanh của nó. Tính tỉ số  . h Mã đề 018 Trang 3/4
  4. r r 1 r 1 r A.  =4. B.  = . C.  = . D.  = 2 . h h 4 h 2 h Câu 33. Cho tứ  diện đều  ABCD .  M , N , P  lần lượt là trung điểm các cạnh  BC , CD, DB . Hỏi mặt  phẳng nào sau đây không phải là mặt phẳng đối xứng của tứ diện  ABCD ? A. mặt phẳng  ( AMN ) . B. mặt phẳng  ( ABN ) . C. mặt phẳng  ( ACP) . D. mặt phẳng  ( ADM ) . Câu 34. Mỗi đỉnh của hình bát diện đều là đỉnh chung của bao nhiêu cạnh? A. 6 B. 5 C. 4 D. 3 Câu 35. Cho khối chóp lục giác đều có thể tích bằng  V , diện tích mỗi mặt bên bằng  S  và O là tâm  của đáy. Tính khoảng cách  d  từ O đến một mặt bên của khối chóp đã cho. 3V V V V A.  d = . B.  d = . C.  d = . D.  d = . S 2S 6S 18S Câu 36. Cho hình chop  ́ S . ABCD  co đay  ́ ́ ABCD  la hinh vuông canh  ̀ ̀ ̣ a , cạnh bên  SA  vuông góc với  mặt phẳng đáy và  SA = 9a . Tính thê tich  ̉ ́ V  của khôi chop  ́ ́ S . ABCD . 3 3 A.  V = 9a . B.  V = 3a . C.  V = 9a3 . D.  V = 3a3 . 2 2 Câu 37. Cho hình lăng trụ  đứng  ABC. A/ B / C /  có  AA/ = a 6  và đáy là tam giác vuông cân  ABC  với  AB = AC = a . Tính thể tích  V  của khối lăng trụ  ABC. A/ B / C / . 3 3 3 A.  V = a3 6 . B.  V = a 6 .   C.   V = a 6 . D.  V = a 6 . 6 3 2 Câu 38. Tính thể  tích  V  của một tam cấp  có 5 bậc, các kích thước mỗi bậc là  20 cm ,  40 cm ,  12 0 cm  (xem hình minh họa). A.  V = 1.440.000 cm3 . 40 cm B.  V = 2.016.000 cm3 . 20 cm C.  V = 480.000 cm3 . D.  V = 1.920.000 cm3 . 120 cm Câu 39. Cho hình lập phương  ABCD. A/ B / C / D /  cạnh bằng  a . Gọi  G  là trọng tâm tam giác  A/ CD .  ́ ứ diện  GBB / C / . ̉ ́ V  của khôi t Tính thê tich  3 3 3 3 A.  V = a . B.  V = a . C.  V = a . D.  V = a . 18 12 9 6 Câu 40. Cho hình lăng trụ   ABC. A/ B / C /  có đáy là tam giác đều cạnh bằng  2a , góc giữa cạnh bên và  mặt phẳng đáy bằng  300 . Hình chiếu vuông góc của  A/  trên mặt phẳng  ( ABC )  trùng với trọng tâm  tam giác  ABC . Tính thể tích  V  của khối lăng trụ  ABC. A/ B / C / . 3 3 3 A.  V = 2a 3 . B.  V = 2a 3 .  C.   V = 2a 3 . D.  V = 2a3 3 . 12 9 3 II. PHẦN TRẮC NGHIỆM TỰ LUẬN: (2 điểm) Câu 41. Tìm tọa độ các giao điểm của đồ thị  (C ) : y = x 4 + 2 x 2 − 3  và parabol  ( P) : y = x 2 + 9 . Câu 42. Cho hình chop  ́ S . ABC  co hai m ́ ặt  ABC  và  SAB  là hai tam giác đều cạnh  a  nằm trong hai  mặt phẳng vuông góc. Tính theo  a  thể  tích khối chóp  S . ABC  và diện tích mặt cầu ngoại tiếp hình   chóp  S . ABC . Mã đề 018 Trang 4/4
  5. ­­­­­­­­­­­­­­­ Hết ­­­­­­­­­­­­­­­ Mã đề 018 Trang 5/4
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
4=>1