intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 13

Chia sẻ: Aae Aey | Ngày: | Loại File: PDF | Số trang:1

85
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 13 để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi

Chủ đề:
Lưu

Nội dung Text: Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 13

  1. Ebooktoan.com/forum OÂn thi toát nghieäp THPT 2013 Đề số 13 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu 1: (3,0 điểm) Cho hàm số: y   x 3  3x 2 ­ 4 . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2) Tìm m để phương trình x 3  3 x 2  m  0 có 3 nghiệm phân biệt. Câu II: (3,0 điểm) 1) Giải phương trình: log4 (2 x 2  8 x )  log2 x  1 .  2 sin2 x 2) Tính tích phân: I=  dx 2 0 1  cos x 3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: f(x) = x  2  x 2 . Câu 3: (1 điểm) Cho khối chóp S.ABC có hai mặt ABC, SBC là các tam giác đều cạnh a và a 3 SA = . Tính thể tích khối chóp S.ABC theo a. 2 II. PHẦN RIÊNG (3,0 điểm) A. Theo chương trình Chuẩn: Câu 4a: (2,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng:  x  1  2t x 1 y 1 z  2  1 :   , 2 :  y  2  t 2 1 2  z  1  2t  1) Chứng minh rằng hai đường thẳng 1 và 2 song song với nhau. 2) Tính khoảng cách giữa hai đường thẳng 1 và 2. 3  2i Câu 5a: (1,0 điểm) Tìm môđun của số phức: z  2i B. Theo chương trình Nâng cao: Câu 4b: (2,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng: x  t x  2 y 1 z 1  1 :   , 2:  y  2  t 1 2 3  z  1  2t  và mặt cầu (S) : x 2  y 2  z2 – 2 x  4 y – 6z – 2  0 . 1) Chứng minh rằng hai đường thẳng 1 , 2 chéo nhau và tính khoảng cách giữa hai đường thẳng đó. 2) Viết phương trình mặt phẳng () song song với hai đường thẳng 1, 2 và cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8. Câu 5b: (1,0 điểm) Giải phương trình sau trên tập hợp số phức: z2 – 2(1  2i)z +8i  0 . -------------------------------- Đáp số: Câu 1: 2) 0 < m < 4 Câu 2: 1) x = 4 2) I = ln2 3) max f ( x )  2 , min x f ( x )   2  2 ; 2     2 ; 2    a3 3 65 Câu 3: V  Câu 4a: 2) d  5 Câu 5a: | z | 16 5 17 Câu 4b: 1) d  2) x – 5 y – 3z – 2  0 Câu 5b: z1 = 2 ; z2 = 4i 35 Trang 13
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2