Đề tài " MỘT SỐ PHƯƠNG PHÁP PHÂN ĐOẠN ẢNH THEO NGƯỠNG "
lượt xem 68
download
Phân đoạn ảnh là một thao tác ở mức thấp trong toàn bộ quá trình xử lý ảnh. Quá trình này thực hiện việc phân vùng ảnh thành các vùng rời rạc và đồng nhất với nhau hay nói cách khác là xác định các biên của các vùng ảnh đó. Các vùng ảnh đồng nhất này thông thường sẽ tương ứng với tòan bộ hay từng phần của các đối tượng thật sự bên trong ảnh. Vì thế, trong hầu hết các ứng dụng của lĩnh vực xử lý ảnh (image processing), thị giác máy tính, phân đoạn...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề tài " MỘT SỐ PHƯƠNG PHÁP PHÂN ĐOẠN ẢNH THEO NGƯỠNG "
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực MỤC LỤC LỜI CẢM ƠN…………………………………… 2 PHẦN 1 : PHÂN ĐOẠN ẢNH...................................3 1.1.Giới thiệu.................................................................................................................. 3 1.2.Các hướng tiếp cận phân đoạn ảnh.........................................................................3 1.2.1.Các phương pháp dựa trên không gian đặc trưng.............................................4 1.2.2.Các phương pháp dựa trên không gian ảnh.......................................................5 1.2.3.Các phương pháp dựa trên mô hình vật lý........................................................ 5 PHẦN 2 : MỘT SỐ PHƯƠNG PHÁP PHÂN ĐOẠN ẢNH THEO NGƯỠNG..............................11 2.1 Giới thiệu chung......................................................................................................11 2.2. Chọn ngưỡng cố định............................................................................................ 12 2.3. Chọn ngưỡng dựa trên lược đồ.............................................................................12 2.3.1. Thuật toán đẳng hiệu......................................................................................13 2.3.2. Thuật toán đối xứng nền................................................................................13 2.3.3 Thuật toán tam giác.........................................................................................14 2.3.4 Chọn ngưỡng đối với Bimodal Histogram......................................................15 2.4.Phương pháp phân đoạn dựa trên ngưỡng cục bộ thích nghi............................... 16 2.4.1 Phân đoạn sơ khởi bằng Watershed................................................................16 2.4.2.Tìm ngưỡng cục bộ thích nghi........................................................................19 2.4.3.Cách tính ngưỡng cục bộ thích nghi............................................................... 23 2.5. Kỹ thuật Gradient...................................................................................................26 2.5.1 Toán tử Robert (Do Robert đề xuất năm 1965),............................................. 26 2.5.2.Toán tử Sobel....................................................................................................27 2.5.3.Toán tử Prewitt.................................................................................................27 PHẦN 4.CÀI ĐẶT VÀ THỦ NGHIỆM..................29 4.1. Yêu cầu về hệ thống............................................................................................. 29 4.2. Chương trình ......................................................................................................... 29 4.3.Giao diện của chương trình....................................................................................36 PHẦN 5 : TỔNG KẾT..............................................37 DANH MỤC CÁC HÌNH VẼ,BẢNG VẼ...............38 CÁC TÀI LIỆU THAM KHẢO...............................39 Nhóm 11 1
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực LỜI CẢM ƠN Trước hết em xin chân thành cảm ơn các thầy cô trong khoa Công Nghệ Thông Tin trường Đại học Điện Lực đã trang bị cho nhóm chúng em những kiến thức cần thiết để có thể hoàn thành đề tài này. Đặc biệt,chúng em xin chân thành cảm ơn thầy Cù Việt Dũng đã nhiệt tình hướng dẫn,tạo điều kiện thuận lợi cho nhóm chúng em trong quá trình học tập và trong quá trình thực hiện đề tài. Mặc dù đã cố gắng hết sức cùng sự giúp đỡ của thầy giáo hướng dẫn xong do trình độ có hạn,nội dung đề tài còn khá mới mẻ với chúng em nên không tránh khỏi những sai sót trong quá trình tiếp nhận kiến thức.Em rất mong được sự chỉ dẫn của các thầy cô và sự góp ý kiến của các bạn để trong thời gian tới nhóm chúng em có thể xây dụng một cách hoàn thiện nhất. Em xin chân thành cảm ơn!!! Nhóm 11 2
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực PHẦN 1 : PHÂN ĐOẠN ẢNH 1.1.Giới thiệu Phân đoạn ảnh là một thao tác ở mức thấp trong toàn bộ quá trình xử lý ảnh. Quá trình này thực hiện việc phân vùng ảnh thành các vùng rời rạc và đồng nhất với nhau hay nói cách khác là xác định các biên của các vùng ảnh đó. Các vùng ảnh đồng nhất này thông thường sẽ tương ứng với tòan bộ hay từng phần của các đối tượng thật sự bên trong ảnh. Vì thế, trong hầu hết các ứng dụng của lĩnh vực xử lý ảnh (image processing), thị giác máy tính, phân đoạn ảnh luôn đóng một vai trò cơ bản và thường là bước tiền xử lý đầu tiên trong toàn bộ quá trình trước khi thực hiện các thao tác khác ở mức cao hơn như nhận dạng đối tượng, biểu diễn đối tượng, nén ảnh dựa trên đối tượng, hay truy vấn ảnh dựa vào nội dung … Vào những thời gian đầu, các phương pháp phân vùng ảnh được đưa ra chủ yếu làm việc trên các ảnh mức xám do các hạn chế về phương tiện thu thập và lưu trữ. Ngày nay, cùng với sự phát triển về các phương tiện thu nhận và biểu diễn ảnh , các ảnh màu đã hầu như thay thế hoàn toàn các ảnh mức xám trong việc biểu diễn và lưu trữ thông tin do các ưu thế vượt trội hơn hẳn so với ảnh mức xám. Do đó, các kỹ thuật, thuật giải mới thực hiện việc phân vùng ảnh trên các loại ảnh màu liên tục được phát triển để đáp ứng các nhu cầu mới. Các thuật giải, kỹ thuật này thường được phát triển dựa trên nền tảng các thuật giải phân vùng ảnh mức xám đã có sẵn. 1.2.Các hướng tiếp cận phân đoạn ảnh Phân đoạn ảnh là chia ảnh thành các vùng không trùng lắp. Mỗi vùng gồm một nhóm pixel liên thông và đồng nhất theo một tiêu chí nào đó. Tiêu chí này phụ thuộc vào mục tiêu của quá trình phân đoạn. Ví dụ như đồng nhất về màu sắc, mức xám, kết cấu, độ sâu của các layer… Sau khi phân đoạn mỗi pixel chỉ Nhóm 11 3
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực thuộc về một vùng duy nhất. Để đánh giá chất lượng của quá trình phân đoạn là rất khó. Vì vậy trước khi phân đoạn ảnh cần xác định rõ mục tiêu của quá trình phân đoạn là gì. Xét một cách tổng quát, ta có thể chia các hướng tiếp cận phân đoạn ảnh thành ba nhóm chính như sau: • Các kỹ thuật phân đoạn ảnh dựa trên không gian đặc trưng. • Các kỹ thuật dựa trên không gian ảnh. • Các kỹ thuật dựa trên các mô hình vật lý. 1.2.1.Các phương pháp dựa trên không gian đặc trưng Nếu chúng ta giả định màu sắc bề mặt của các đối tượng trong ảnh là một thuộc tính bất biến và các màu sắc đó được ánh xạ vào một không gian màu nào đó, vậy thì chúng ta sẽ có một cái nhìn đối với mỗi đối t ượng trong ảnh như là một cụm (cluster) các điểm trong không gian màu đó. Mức độ phân tán của các điểm trong trong một cụm được xác định chủ yếu bởi s ự khác biệt về màu sắc. Một cách khác, thay vì ánh xạ các pixel trong ảnh vào một không gian màu cụ thể, ta xây dựng một biểu đồ ( histogram) dựa trên các đặc trưng màu dạng ad-hoc cho ảnh đó (ví dụ như Hue), và thông thường, các đối tượng trong ảnh sẽ xuất hiện như các giá trị đỉnh trong biểu đồ(histogram) đó. Do đó, việc phân vùng các đối tượng trong ảnh tương ứng với việc xác định các cụm – đối với cách biểu diễn thứ nhất – hoặc xác định các vùng cực trị của biểu đồ (histogram) đối với cách biểu diễn thứ hai. Các phương pháp tiếp cận này chỉ làm việc trên một không gian màu xác định chẳng hạn phương pháp của Park,áp dụng trên không gian màu RGB, còn phương pháp của Weeks và Hague thì áp dụng trên không gian màu HIS. Dựa trên không gian đặc trưng, ta có các phương pháp phân đoạn: phương pháp phân nhóm đối tượng không giám sát, phương pháp phân lớp trung bình thích nghi, phương pháp lấy ngưỡng biểu đồ (histogram). Nhóm 11 4
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực 1.2.2.Các phương pháp dựa trên không gian ảnh Hầu hết những phương pháp được đề cập trong phần trên đều hoạt động dựa trên các không gian đặc trưng của ảnh(thông thường là màu sắc). Do đó, các vùng ảnh kết quả là đồng nhất tương ứng với các đặc trưng đã chọn cho từng không gian. Tuy nhiên, không có gì đảm bảo rằng tất cả các vùng này thể hiển một sự cô đọng (compactness) về nội dung xét theo ý nghĩa không gian ảnh (ý nghĩa các vùng theo sự cảm nhận của hệ thần kinh con người). Mà đ ặc tính này là quan trọng thứ hai sau đặc tính về sự thuần nhất của các vùng ảnh. Do các phương pháp gom cụm cũng như xác định ngưỡng biểu đồ( histogram) đã nêu đều bỏ qua thông tin về vị trí của các pixel trong ảnh. Trong các báo cáo khoa học về phân vùng ảnh mức xám, có khá nhiều kỹ thuật cố thực hiện việc thoả mãn cùng lúc cả hai tiêu chí về tính đồng nhất trong không gian đặc trưng của ảnh và tính cô đọng về nội dung ảnh. Tuỳ theo các kỹ thuật mà các thuật giải này áp dụng, chúng được phân thành các nhóm sau: Các thuật giải áp dụng kỹ thuật chia và trộn vùng. Các thuật giải áp dụng kỹ thuật tăng trưởng vùng. Các thuật giải áp dụng lý thuyết đồ thị. Các giải thuật áp dụng mạng neural. Các giải thuật dựa trên cạnh. 1.2.3.Các phương pháp dựa trên mô hình vật lý Tất cả các giải thuật được xem xét qua, không ít thì nhiều ở mặt nào đó đều có khả năng phát sinh việc phân vùng lỗi trong các trường hợp cụ thể nếu như các đối tượng trong ảnh màu bị ảnh hưởng quá nhiều bởi các vùng sáng hoặc bóng mờ, các hiện tượng này làm cho các màu đồng nhất trong ảnh thay đổi Nhóm 11 5
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực nhiều hoặc ít một cách đột ngột. Và kết quả là các thuật giải này tạo ra các kết quả phân vùng quá mức mong muốn so với sự cảm nhận các đối tượng trong ảnh bằng mắt thường. Để giải quyết vấn đề này, các giải thuật phân vùng ảnh áp dụng các mô hình tương tác vật lý giữa bề mặt các đối tượng với ánh sáng đã được đề xuất. Các công cụ toán học mà các phương pháp này sử dụng thì không khác mấy so với các phương pháp đã trình bày ở trên, điểm khác biệt chính là việc áp dụng các mô hình vật lý để minh hoạ các thuộc tính phản chiếu ánh sáng trên bề mặt màu sắc của các đối tượng. Cột mốc quan trọng trong lĩnh vực phân vùng ảnh màu dựa trên mô hình vật lý được Shafer đặt ra. Ông giới thiệu mô hình phản xạ lưỡng sắc cho các vật chất điện môi không đồng nhất. Dựa trên mô hình này, Klinker đã đặt ra một giải thuật đặt ra một số giả thiết quang học liên quan đến màu sắc, bóng sáng, bóng mờ của các đối tượng và cố gắng làm phù hợp chúng với hình dạng của các cụm. Hạn chế chính của giải thuật này là nó chỉ làm việc trên các vật chất điện môi không đồng nhất. Hai ông cùng tên Tsang đã áp dụng mô hình phản xạ lưỡng sắc trong không gian HSV để xác định các đường biên trong ảnh màu. Healey đề xuất một mô hình phản xạ đơn sắc cho các vật chất kim loại. Các phương pháp đề cập trong phần này chỉ áp dụng cho hai loại vật chất là kim loại và điện môi không đồng nhất. Một thuật toán tổng quát và phức tạp hơn cũng được Maxwell và Shafer đề xuất trong. Tóm lại, một cái nhìn tổng quan về các phương pháp phân đoạn ảnh như sau: Nhóm 11 6
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực Color Image Segmentation techniques Featurebased Spatialbased Physicsbased Clustering Split and merge Adaptive kmeans clust. Region growing Histogram thresholding Edge based Neural network based Graph theoretical Mỗi phương pháp đều có những ưu nhược điểm nhất định: Phương pháp phân vùng Ưu điểm Khuyết điểm Featuredbased techniques(tính năng kĩ thuật) Clustering(cụm) Phân loại không cần Không quan tâm đến giám sát. các thông tin trong không gian ảnh. Tồn tại các phương pháp kinh nghiệm cải Có vấn đề trong việc tiến(heuristic) và hữu hạn. xác định số lượng các cụm ban đầu. Khó khăn trong việc điều chỉnh các cụm sao cho phù hợp với các vùng trong ảnh. Adaptive Clustering Sở hữu tính liên tục Cực đại hoá một xác trong không gian ảnh và tính suất hậu điều kiện có thể bị thích nghi cục bộ đối với sai do các cực trị địa các vùng ảnh. phương. Sử dụng các ràng buộc Hội tụ chậm. Nhóm 11 7
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực về không gian ảnh. Phương pháp phân vùng Ưu điểm Khuyết điểm Histogram thresholding Không cần biết trước Bỏ qua các thông tin về bất kỳ thông tin nào từ ảnh. không gian ảnh. Các giải thuật nhanh và Lấy ngưỡng trong các dễ dàng cài đặt. histogram đa chiều là một quá trình phức tạp. Ảnh hưởng dễ dàng bởi nhiễu xuất hiện trong ảnh. Spatialbased techniques Spit and Merge Sử dụng các thông tin Định nghĩa mức độ về không gian ảnh là chính. đồng nhất về màu sắc có Cho kết quả tốt với các thể phức tạp và khó khăn. ảnh chứa nhiều vùng màu Quadtree có thể gây ra đồng nhất. các kết quả không như mong muốn. Region growing Các vùng ảnh đồng Tốn kém chi phí sử nhất và liên thông. dụng bộ nhớ và tính toán. Có một số thuật giải Gặp khó khăn trong có tốc độ thực thi khá việc thu thập tập các điểm nhanh. mầm và xác định các điều kiện đồng nhất đầy đủ. Chịu ảnh hưởng bởi các đặc tính tự nhiên của kỹ thuật này. Graph theories Thể hiện tốt không Một vài thuật giải mất gian ảnh bằng đồ thị. khá nhiều thời gian thực hiện. Một số thuật toán có tốc độ thực hiện nhanh. Các đặc trưng cục bộ đôi khi được sử dụng nhiều Nhóm 11 8
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực hơn các đặc trưng toàn cục. Neural networks Mức độ song song hoá Màu sắc có thể làm cao và có tốc độ thực thi tăng độ phức tạp của mạng. nhanh. Quá trình học cần phải Khả năng chống chịu biết trước số lượng các tốt trước các thay đổi xấu. phân lớp/cụm. Một công cụ hữu hiệu cho các ứng dụng nhận dạng và xử lý ảnh y khoa. Edge-based Là phương pháp được Khó khăn trong việc hỗ trợ mạnh bởi các toán tử định nghĩa một hàm gradient dò biên. cho các ảnh màu. Có hiệu năng tốt với Nhiễu hoặc các ảnh có các ứng dụng dò biên đối độ tương phản kém ảnh tượng theo đường cong. hưởng xấu đến kết quả phân vùng. Phương pháp phân vùng Ưu điểm Khuyết điểm Physicsbased techniques Khẳng định tính chắc Bị giới hạn vào một số chắn đối với các vùng bóng lượng nhất định các loại sáng/tối, và vùng bóng vật chất hình thành nên đối chuyển tiếp (diffuse hoặc tượng. shade) Khó khăn trong việc xác định vùng bóng sáng và Phân vùng các đối bóng chuyển tiếp trong các tượng dựa vào thành ảnh thực. phần vật liệu cấu tạo Một vài giải thuật đòi hỏi các thông tin về hình dạng đối tượng (không luôn luôn đáp ứng được). Chi phí tính toán khá Nhóm 11 9
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực cao. Đối với bài toán truy vấn ảnh theo nội dung, bước tiền xử lý phân đoạn phải chú ý đến các thông tin tòan cục và cả cục bộ. Đồng thời đảm bảo tính liên tục trong không gian ảnh. Vì vậy, ở đây ta sẽ đi sâu vào các thuật toán phân đoạn: phương pháp phân đoạn yếu của B.G. Prasad áp dụng trong hệ thống truy vấn ảnh của ông; phương pháp phân đoạn trung bình-k thích nghi; phương pháp phân đoạn theo ngưỡng cục bộ thích nghi. Nhóm 11 10
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực PHẦN 2 : MỘT SỐ PHƯƠNG PHÁP PHÂN ĐOẠN ẢNH THEO NGƯỠNG 2.1 Giới thiệu chung -Biên độ của các thuộc tính vật lý của ảnh(như độ phản xạ,độ truyền sang,màu sắc…)là một đặc tính đơn giản và rất hữu ích.Nếu biên dộ đủ lớn đặc trưng cho phân đoạn ảnh.Thí dụ,biên độ trong bộ cảm biến hồng ngoại có thể phản ánh vùng có nhiệt độ thấp hay nhiệt độ cao.Đặc biệt,kỹ thuật phân ngưỡng theo biên độ rất có ích với ảnh nhị phân như văn bản in,đồ họa,ảnh màu hay ảnh X-quang. -Việc chọn ngưỡng trong ky thuật này là bước vô cùng quan trọng,thong thường người ta tiến hành theo các bước chung nhu sau: + Xem xét lược đồ xám của ảnh để xác định đỉnh và khe,nếu ảnh có nhiều đỉnh và kh thì các khe có thể sử dụng để chọn ngưỡng. +Chọn ngưỡng T sao cho một phần xác định trước η của toàn bộ số mẫu thấp hơn T. -Điều chỉnh ngưỡng dựa trên xét lược đồ của điểm lận cận -Chọn ngưỡng bằng cách xem xét lược đồ xám của những điểm tiêu chuẩn đã chọn. Một thuật toán đơn giản trong kỹ thuật này là :giả sử rằng mình chúng ta đang quan tâm tới các đối tượng sang(object) trên nền tối(background),một tham số T gọi là ngưỡng độ sang sẽ được chọn 1 ảnh f[x,y] theo cách: Ngược lại, với các đối tượng tối trên nền sang chúng ta có thuật toán sau: Nhóm 11 11
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực Vấn đề chính là chúng ta nên chọn ngưỡng thế nào để việc phân vùng đạt kết quả cao nhất? Có rất nhiều thuật toán chọn ngưỡng : ngưỡng cố định,dựa trên lược đồ,sử dụng Entropy,sủ dụng tập mờ,chọn ngưỡng thông qua sụ không ổn định của lớp và tính thuần nhất của vùng. 2.2. Chọn ngưỡng cố định Đây là một phương pháp chọn ngưỡng độc lập với dữ liệu ảnh. Nếu chung ta biết trước là chương trình ứng dụng sẽ làm việc với các ảnh có độ tương phản khá cao,trong đó các đối tượng quan tâm rất tối còn nền gần như là đồng nhất và rất sang thì việc chon ngưỡng T=128(xét trên thang độ sang từ 0 tới 255) là một giá trị chọn khá chính xác.Chính xác ở đây hiểu theo nghĩa là số các điểm ảnh bị phân lớp sai là cực tiểu. 2.3. Chọn ngưỡng dựa trên lược đồ Trong hầu hết các trường hợp,ngưỡng được chọn từ lược đồ sáng của vùng hay ảnh cần phân đoạn.Có rất nhiều kỹ thuật chọn ngưỡng tự động xuất phát từ lược đồ xám {h[b] !b=0,1,2 …2B -1} đã được đưa ra.Những kỹ thuật phổ biến sẽ được trình bày dưới đây.Nhưng kỹ thuật này có thể tận dụng những lợi thế do sự làm trơn dữ liệu lược đồ ban đầu mang lại nhằm loại bỏ những giao động nhỏ về độ sáng.Tuy nhiên các thuật toán làm trơn cần phải cận thận,không được làm dịch chuyển các vị trí đỉnh của lược đồ.Nhận xét này dẫn tới thuật toán làm trơn dưới đây : Trong đó, W thường được chọn là 3 hoặc 5 Nhóm 11 12
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực 2.3.1. Thuật toán đẳng hiệu Đây là kỹ thuật chọn ngưỡng theo kiểu lặp do Ridler va Calvard đưa ra.Thuật toán được mô tả như sau: -B1 : Chọn giá trị ngưỡng khởi động θo =2B-1 -B2 : Tính các trung bình mẫu (mf,o) của những điểm ảnh thuộc đối tượng và (mb,0) của những điểm ảnh nền. -B3 :Tính ngưỡng trung gian theo công thức : -B4 : nếu θk =θk-1 : kết thúc và dừng thuật toán Ngược lại : tiếp tục bước 2. 2.3.2. Thuật toán đối xứng nền Kỹ thuật này dựa trên sự giả định là tồn tại hai đỉnh phân biệt trong l ược đồ nằm đối xứng qua đỉnh có giá trị lớn nhất trong phần lược đồ thuộc về các điểm ảnh nền.Kỹ thuật này có thể tận dụng ưu điểm của việc làm trơn đ ược mô tả trong chương trình ???. Đỉnh cực đại maxp tìm được nhờ tiến hành tìm giá trị cực đại trong lược đồ.Sau đó thuật toán sẽ áp dụng ở phía không phải là điểm ảnh thuộc đối tượng ứng với giá trị cực đại đó nhằm tìm ra giá trị độ sáng a ứng với giá trị phần trăm p% mà :P(a) = p%,trong đó P(a) là hàm phân phối xác xuất về độ sáng được định nghĩa như sau : Định nghĩa : [ Hàm phân phối xác xuất về độ sáng ] Hàm phân phối xác xuất P(a) thể hiện xác suất chọn được một giá trị độ sáng từ một vùng ánh sáng cho trước,sao cho giá trị này không vượt qua một giá trị này cho trước,sao cho giá trị này không vượt quá giá trị sáng cho trước a. Khi a biến thiên từ -∞ đến +∞,P(a) sẽ nhận các giá trị từ 0 đến 1,P(a) là hàm đ ơn điệu không giảm theo a,do vật dP/da >=0 Nhóm 11 13
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực Hình 1. Hình minh họa thuật toán đối xứng nền Ở đây ta đang giả thiết là ảnh có các đối tượng tối trên nền sáng.Giả sử mức là 5% thì có nghĩa là ta phải ở bên phải đỉnh maxp một giá trị a sao cho P(a)= 95%.Do tính đối xứng đã giả định ở trên,chúng ta sử dụng độ dịch chuyển về phía trái của điểm cực đại tìm giá trị ngưỡng T : T=maxp – (a - maxp) Kỹ thuật này dễ dàng điều chỉnh được cho phù hợp với tình huống ảnh có các đối tượng sáng trên một nền tối. 2.3.3 Thuật toán tam giác Khi một ảnh có các điểm ản thuộc đối tượng tạo nên một đỉnh yếu trong lược đồ ảnh thì thuật toán tam giác hoạt động rất hiệu quả.Thuật toán này do Zack đề xuất và được mô tả như sau: -B1 : xây dựng đường thẳng là đường nối 2 điểm là (Hmax,bmax) và (Hmin,bmin) trong đó Hmax là điểm Histogram ứng với độ sáng nhỏ nhất bmin. -B2 : Tính khoảng cách d từ Hb của lược đồ(ứng với điểm sáng b) đến Trong đó ,b [bmax,bmin]. -B3 :Chọn ngưỡng T=Max{Hb} Minh họa thuật toán tam giác bởi hình vẽ như sau : Nhóm 11 14
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực Hình 2. Minh họa thuật toán tam giác 2.3.4 Chọn ngưỡng đối với Bimodal Histogram Ngưỡng T được chọn ở tại vị trí cực tiểu địa phương của Histogram nằm giữa hai đỉnh của Histogram.Điểm cực đại địa phương của Histogram có thể dễ dàng được phát hiện bằng cách sử dụng biến đổi chóp mũ(top hat) do Meyer đưa ra : phụ thuộc vào tình huống chúng ta phải làm việc là đối với đối tượng sáng trên nền tối hay đối tượng tối trên nền sáng mà phép biến đổi top hat sẽ có một trong hai dạng sau: a/Các đối tượng sáng b/Các đối tượng tối Việc tính toán giá trị cực tiểu địa phương của Histogram thì khó nếu histogram nhiễu.Do đó,trong trường hợp này nên làm trơn histogram,ví dụ sử dụng thuật toán. Nhóm 11 15
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực Hình 3 . Bimodal Histogram Trong một số ứng dụng nhất định,cường độ của đối tượng hay nền tối thay đổi khá chậm.Trong trường hợp này,histogram ảnh có thể không chứa hai thùy phân biệt rõ rang,vì vậy có thể sử dụng ngưỡng thay đổi theo không gian.Hình ảnh được chia thành các khối vuông,histogram và ngưỡng được tính cho mỗi khối vuông tương ứng. 2.4.Phương pháp phân đoạn dựa trên ngưỡng cục bộ thích nghi Số ngưỡng cục bộ và giá trị của chúng không được chỉ định trước mà được trích lọc thông qua quá trình kiểm tra các thông tin cục bộ Giải thuật gồm các bước tuần tự như sau: • Áp dụng giải thuật Watershed chia ảnh thành rất nhiều vùng con. • Trộn các vùng và đồng thời phát hiện ngưỡng cục bộ. Ngưỡng được tính từ thông tin cục bộ của vùng và các vùng lân cận Giải thuật này cho kết quả tương đối tin cậy trên nhiều loại ảnh khác nhau 2.4.1 Phân đoạn sơ khởi bằng Watershed Dữ liệu đầu vào của giải thuật Watershed là một ảnh xám. Vì vậy, trước tiên ta biến đổi ảnh đầu vào I thành ảnh xám. Sau đó, dùng giải thuật tìm cạnh Canny [20] để lấy cường độ gradient, kí hiệu là I G. Với ảnh gradient nhận được, Nhóm 11 16
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực ta hình liên tưởng đến một lược đồ địa hình, vùng có độ xám cao hơn là vùng trũng hơn và ngược lại. Tại mỗi pixel, việc đánh giá sẽ dựa vào giá trị mức xám của pixel đó. Giải thuật định nghĩa hai thuật ngữ là vũng chứa nước (catchment basin) và đập ngăn nước (dams). Mỗi catchment basin được kết hợp với giá trị M nhỏ nhất. M là tập hợp các pixel liên thông mà một giọt nước rơi xuống từ pixel bất kì thuộc catchment basin này cứ rơi cho đến khi nó đạt được giá trị nhỏ nhất M. Trên đường rơi xuống, giọt nước chỉ đi qua những pixel thuộc về catchment basin này. Dam thực chất là những đường phân nước, chúng tập hợp các pixel làm nhiệm vụ phân cách các catchment basin. Vì vậy, giọt nước rơi từ một bên của dams sẽ đạt trị nhỏ nhất của một catchment basin, trong khi đó giọt nước rơi t ừ cạnh khác của dam lại đạt trị nhỏ nhất trong catchment basin khác. Áp dụng giải thuật watershed, phiên bản của Vincent và Soille.. Phiên bản này mô phỏng việc ngâm nước dần dần bề mặt địa hình của ảnh từ vùng thấp Nhóm 11 17
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực nhất cho đến khi mọi pixel của ảnh đều được ngâm trong nước. Giải thuật gồm hai bước: sắp thứ tự và làm ngập nước. Ở bước thứ nhất, ta sắp xếp các pixel theo thứ tự tăng dần của cường độ xám. Kế đến, trong bước làm ngập nước, giải thuật quét các pixel theo trình tự đã sắp xếp để xây dựng các catchment basin. Mỗi catchment basin có một nhãn phân biệt. Bạn hãy thử hình dung ta đem nhúng nước một bề mặt địa hình, bắt đầu tại điểm thấp nhất của mặt địa rồi cho nước dâng dần lên. Khi nước trong các vũng cạnh nhau có thể hoà vào nhau tại một điểm, tại đó ta xây dựng một đập chắn nước, rồi lại tiếp tục cho nước dâng lên. Quá trình xây đập chắn giữa các vũng và cho nước dâng cứ lặp đi lặp lại cho đến khi mọi điểm c ủa bề mặt địa hình đều được ngâm nước. Trở lại giải thuật, ta làm tương tự, tại một điểm mà nước trong các catchment basin có thể hoà vào nhau, ta xây dựng một đập chắn nước – dam. Cứ như thế, lặp quá trình cho nước dâng lên và xây dựng dam tại những điểm nước của các catchment basin có thể hoà lẫn vào nhau cho đến khi mọi điểm ảnh đ ều nằm trong nước. Khi đó, ta nhận được ảnh gồm vô số vùng con, mỗi vùng con tương ứng với một catchment basin, còn biên của mỗi vùng chính là dam. Bạn xem hình 4 minh họa quá phân ảnh ban đầu (a) thành vô số vùng con (d). Tr ước tiên ảnh gốc 4a được biến đổi thành ảnh xám 4b. Kế đến, áp dụng giải thuật tìm cạnh Canny trên ảnh xám gradient ở hình 4b, ta được ảnh 4c chỉ gồm các đường nét. Đồng thời, áp dụng giải thuật watershed trên ảnh xám ta được hình 4d, chứa vô số vùng con. Như vậy khi áp dụng giải thuật watershed vào ảnh IG, ta nhận được ảnh kết quả gồm n vùng không trùng lắp. Do các vùng này sẽ đ ược trộn trong giai m đoạn trộn tiếp theo nên chúng tôi đặt đánh dấu chúng bằng kí hiệu Ri , I = 1, i m …,n, mi = 1,…,Mi, với n là số lượng vùng và Mi là số lần trộn của Ri trong quá i 0 trình trộn. Ri , i=1,…,n là tập các vùng khởi tạo, hay nói cách khác chúng là kết Nhóm 11 18
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực quả của giải thuật watershed trước khi quá trình trộn lặp của giai đoạn hai bắt đầu. Hình 4 : Hình minh họa (a) Ảnh gốc ban đầu. (b) Ảnh xám. (c) Ảnh xám gradient sau khi đã áp dụng giải thuật tìm cạnh Canny. (d) Ảnh phân đoạn nhận được từ việc áp dụng giải • Cạnh có trọng số ∞ sẽ được đặt ở cuối danh sách trọng số sắp xếp, và không được xem xét đến. Vì vậy, nếu cạnh có trị ∞ nghĩa là ta không 2.4.2.Tìm ngưỡng cục bộ thích nghi Mặc dù phần mô tả quá trình trộn đã hoàn chỉnh nhưng ta vẫn chưa xác định được khi nào thì giải thuật dừng. Hay nói cách khác, ta vẫn chưa biết Nhóm 11 19
- Khoa Công Nghệ Thông Tin - Đại học Điện Lực cách xác định vùng nào không trộn được và thời điểm nào thì không trộn. Như vậy, chúng ta cần có cơ chế tự động rút trích thông tin về ngưỡng cục bộ thông qua việc theo dõi sự thay đổi của mỗi vùng trong quá trình trộn. Các ngưỡng này sẽ cho biết có thể trộn một vùng hay không. Như thế, các ngưỡng này giúp hình thành phân vùng hoàn chỉnh cuối cùng. Như chúng ta đã biết quá trình phân đoạn là thao tác cục bộ, nên không phải mọi bước trộn cục bộ đều dừng đồng thời. Do đó việc sử dụng ngưỡng toàn cục là không đủ vì các vùng thường tách biệt với xung quanh nó bởi những ngưỡng khác nhau vào những lần xử lý khác nhau. Tuy nhiên trong một vài trường hợp thì ngưỡng toàn cục lại phù hợp. Ví dụ ở hình 5 mô tả một trường hợp ngoại lệ, chỉ dùng một ngưỡng toàn cục mà vẫn cho kết quả phân đoạn chính xác. Lý do là ảnh ví dụ chỉ chứa một đối tượng đồng nhất về màu sắc, đồng thời phần nền cũng có màu đồng nhất. Trong trường hợp này chỉ cần một ngưỡng cho quá trình trộn là đủ. Quá trình trộn sẽ dừng khi trọng số của các cạnh khảo sát lớn hơn ngưỡng chọn trước, cụ thể trong ví dụ này là 100. Bạn xem kết quả phân đoạn bằng ngưỡng trên ở hình 5b. Trong thực tế, các ảnh phân tích thường chứa nhiều hơn hai vùng nên rất khó phân đoạn nếu chỉ dùng một ngưỡng toàn cục. Hình 5. (a) Ảnh gốc. (b) Kết quả phân đoạn bằng ngưỡng toàn cục 100. Nhóm 11 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận văn thạc sĩ giáo dục học đề tài: Một số biện pháp nâng cao hiệu quả việc tổ chức hoạt động nhóm trong dạy học Hóa học lớp 11 ở trường THPT
166 p | 550 | 154
-
Đề tài "Một số phương hướng và biện pháp nhằm duy trì và mở rộng thị trường tiêu thụ sản phẩm ở Công ty Dụng Cụ Cắt và Đo Lường Cơ Khí"
103 p | 343 | 115
-
Đề tài “Một số giải pháp nhằm phát triển thị trường tiêu thụ sản phẩm của công ty TNHH sản xuất, thương mại & dich vụ Đức-Việt”
69 p | 195 | 69
-
Đề tài: Một số phương pháp toán học hỗ trợ sinh viên đại học Ngoại thương tiếp cận và giải quyết bài toán kinh tế
113 p | 219 | 46
-
Đề tài: “Một số phương hướng và biện pháp cơ bản nhằm nâng cao chất lượng sản phẩm tại công ty cổ phần may Lê Trực”
113 p | 155 | 44
-
Bài thuyết trình: Tham khảo một số phương pháp dạy học tiên tiến ở nước ngoài
46 p | 208 | 30
-
Đề tài: Một số bài toán thường gặp về viết phương trình tiếp tuyến của đồ thị hàm số
20 p | 145 | 27
-
Luận văn tốt nghiệp đề tài: Một số biện pháp phát triển thị trường xuất khẩu hàng thủ công mỹ nghệ tại Công ty XNK BAROTEX
89 p | 120 | 25
-
Đề tài: Một số biện pháp nhằm tăng cường thu hút và sử dụng nguồn vốn FDI của tỉnh Thái Nguyên
79 p | 166 | 24
-
Đề tài khoa học: Nghiên cứu khai thác sử dụng một số phương pháp phân tích số liệu thống kê dựa trên phần mềm SPSS
17 p | 82 | 19
-
Đề tài: Một số biện pháp đẩy mạnh hoạt động xuất khẩu cho Công Ty
62 p | 83 | 16
-
Đề tài: Một số giải pháp thúc đẩy đầu t phát giả pháp thúc đẩy đầu phát triển cơ sở hạ tầng giao thông nông Việt Nam từ nay đến năm 2010
70 p | 126 | 16
-
Đề tài: "Một số phương hướng và giải pháp nhằm thúc đẩy tăng trưởng và phát triển kinh tế tỉnh Bắc Kạn từ nay đến năm 2010".
81 p | 94 | 12
-
Luận văn Thạc sĩ Ngôn ngữ học: Một số phương thức chơi chữ trong câu đố tiếng Việt
100 p | 19 | 10
-
Đề tài nghiên cứu khoa học cấp trường: Nghiên cứu một số phương pháp kiểm nghiệm thiết bị khảo sát thủy đạc
60 p | 24 | 6
-
Luận văn Thạc sĩ Quản lý tài nguyên môi trường: Đánh giá tình hình sử dụng túi nilon trong tiêu dùng của người dân tại một số phường trung tâm TP Thái Nguyên và biện pháp giảm thiểu
79 p | 52 | 6
-
Luận văn Thạc sĩ ngành Máy tính: Nghiên cứu một số phương pháp khai phá dữ liệu phát hiện phản ứng có hại của thuốc
75 p | 30 | 5
-
Luận văn Thạc sĩ Toán học: Một số phương pháp lặp cho bài toán điểm bất động
57 p | 12 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn