Đề tài: Phương pháp phân tích phần dư trong hàm hồi quy
lượt xem 48
download
Chúng ta có thế xây dựng được mô hình hồi quy bội dù chúng ta có đưa vào bao nhiêu biến đi chăng nữa thì yếu tố phần dư vẫn tồn tại vì yếu tố hiễn nhiên của chúng ,ngaycả khi các biến bị loại bỏ khỏi mô hình - ei được sử dụng như một yếu tố đại diienj cho tất cả các biến không có trong mô hình ngay cả khi các biến bị loại bỏ khỏi mô hình là biến nào đi chăng nữa khi đó quá trình chuyển đổi mô hình hồi quy tổng thể PRF sang mô hình hồi quy...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề tài: Phương pháp phân tích phần dư trong hàm hồi quy
- BÁO CÁO TỐT NGHIỆP Đề tài Phương pháp phân tích phần dư trong hàm hồi quy
- MỤC LỤC CHƯƠNG 1 KHÁI NIỆM CƠ SỞ PHÂN TÍCH PHẦN DƯ HÀM HỒI QUI 1.1. Khái niệm ,cơ sở phân tích hàm hồi qui ............................................................3 1.2. bản chất của phần dư trong hàm hồi quy .......................................................... 4 1.3. sự cần yhieets phải phân tích phần d ư trong hàm hồi quy.................................. 4 1.4. Ý ngh ĩa của việc phân tích phần dư tỏng h àm hôi quy ...................................... 4 CHƯƠNG 2 : NỘI DUNG PHÂN TÍCH PHẦN DƯ TRONG HÀM HỒI QUY 2.1. Mô hình hồi qui đơn biến ( Hai biến )............................................................... ..5 2.1.1. Khái niệm về hồi quy................................................................................... 5 2.1.2.Nội dung phân tích phần dư ei theo phương pháp b ình phương nhỏ nh ất OLS............................................................6 -7 2.1.3.Nội dung phân tích phần dư theo phương pháp b ình phương nhỏ nhất.... tổng quát .........................................................8 -9 2.1.4. phân tích phần dư trong h ệ số đo sự phù hợp của hàm hồi quy mẫu...10 -11 2.1.5. Một số dạng h àm thường được sử dụng............................................... 12 -15 2.2. Mô hình hồi quy tuyến tính bộ...........................................................................16 2.2..1 .Xây dựng mô hình .................................................................................... 16 2..2.2. Mô hình hồi quy 3 biến ....................................................................... 16 -17 2.2..3. Mô hình hồi quy K biến........................................................................... 18 CHƯƠNG 3 Ứ NG DỤNG CỦA PHẦN DƯ TRONG PHÂN TÍCH HÀM HỒI QUY 3.1. Phát hiện phương sai của sai số thay đổi......................................................... 19 3.1.1 Xem xét đồ thị............................................................................................ 20 3.1.2 Kiểm đinh Glejser ................................................................................... 20 3 .1.3 Kiểm đinh While............................................................................. 20 -21
- 3 .1.4 Kiểm định Breusch -Paga................................................................. 21 -22 . 3.2 .Phát hiện có sự tương quan............................................................................... 22 3.2.1. Phương pháp đồ thị....................................................................... 22 -23 3.2.2. Phương phá kiểm định số lượng........................................................ 24 3.3. Phân tích ph ần dư để kiểm tra các giả định trong...................................... 24 -26 phân tích hồi qui tuyến tính.
- KHÁI NIỆM CƠ SỞ PHÂN TÍCH PHẦN DƯ H ÀM HỒI QUI CHƯƠNG 1 1.1 . Khái niệm ,cơ sở phân tích hàm hồi qui ˆ ˆ Gỉa sử chúng ta có mô hình hồi qui tổng thể PRF : E(Y/X=Xi) = 2 + 2 X n ếu như E tuyến tính với Xi thì Yi = 1 2 X i Ui ˆ ˆ ˆ khi đó ta có mô hình hồi quy mẫu SRF: Yi 1 2 X i ˆ ˆ từ trên : Yi = 1 + 2 Xi + ei trong đó β1 : là hệ số tự do ( hệ số góc ) β2 : là hệ số góc ˆ ˆ 1 và 2 là ước lượng của β1và β2 ei :được gọi là ph ần dư hay chính là ước lượng của Ui Giá trị ước lượng của Yi ˆ Yi 1 2 X i Yi e i ˆ ˆ ˆ ˆ SRF: Yi 1 2 X i Yi Hình biểu diễn phần dư ei
- vậy phần dư hàm hồi quy là ư ớc lượng của Ui hay là giá trị ch ênh lệch giữa b iến ˆ phụ thuộc (Yi) với biến tiêu th ức phụ thuộc ( Yi ) ˆ ei = Yi - Yi phần dư hàm hồi quy có thể âm có thể dương 1.2. bản chất của phần dư trong hàm hồi quy -Chúng ta có thế xây dựng được mô hình hồi quy bội dù chúng ta có đưa vào bao nhiêu biến đi chăng nữa thì yếu tố phần dư vẫn tồn tại vì yếu tố hiễn nhiên của chúng ,ngaycả khi các biến bị loại bỏ khỏi mô hình - ei được sử dụng như một yếu tố đại diienj cho tất cả các biến không có trong mô h ình ngay cả khi các biến bị loại bỏ khỏi mô h ình là biến nào đi chăng nữa khi đó quá trình chuyển đổi mô h ình hồi quy tổng thể PRF sang mô hình hồi quy mẫu SRF luôn luôn tồn tại phần dư ei như một yếu tố ngẫu nhiên - Ngoài các biến giải thích đ ã có trong mô hình còn có một số biến khác nhưng ảnh hưởng của chúng đến Y rất nhỏ .Trong trường hợp n ày chúng ta có thể sử dụng yếu tố ngẫu nhiên Ui để đại diện cho chúng .Tức ph àn dư ei đại diện cho quá trình chuyển đổi mô hình PRF san g SRF , với ei là ước lượng của Ui 1.3. sự cần yhieets phải phân tích phần dư trong hàm hồi quy ei là ước lượng của Ui hay là giá trị ch ênh lệch giữa biến phụ thuộc Yi với ước ˆ lượng của biến tiêu thức phụ thuộc Yi vì vậy quá trình phân tích phần dư ei trong ˆ ˆ h àm hồi quy chúng ta xác định được các tham số 1 và 2 của mô h ình hồi quy cũng như các yếu tố khác có trong mô hình hồi quy 1.4. Ý nghĩa của việc phân tích phần dư tỏng hàm hôi quy Việc phân tích phần dư trong hàm hồi quy là cơ sở là tiền đề trong tất cả các phân tích của hàm hồi quy với cỏ sở ban đầu là tổng phần dư nhỏ nhất theo OLS ta xác đinh được các biến có trong mô hình 2 n n ei2 Yi Yˆi => min i 1 i 1
- CHƯƠNG 2 : NỘI DUNG PHÂN TÍCH PHẦN DƯ TRONG HÀM HỒI QUY 2 .1. Mô hình hồi qui đơn biến ( Hai biến ) 2.1.1. Khái niệm về hồi quy Phân tích hồi quy là tìm quan hệ phụ thuộc của một biến, được gọi là biến phụ thuộc vào một hoặc nhiều biến khác, được gọi là biến độc lập nhằm mục đích ước lượng hoặc tiên đoán giá trị kỳ vọng của biến phụ thuộc khi biết trước giá trị của b iến độc lập.1 Một số tên gọi khác của biến phụ thuộc và biến độc lập nh ư sau: -Biến phụ thuộc: b iến được giải thích, biến được dự báo, biến đ ược hồi quy, b iến phản ứng, biến nội sinh. -Biến độc lập: biến giải thích, biến dự báo, biến hồi quy, biến tác nhân hay biến kiểm soát, biến ngoại sinh. -Hàm hồi quy tổng thể và hồi quy mẫu giả sử chúng ta có n cặp quan sát của Y và X khi đó xây dựng được mô hình hồi quy ˆ ˆ PRF : E(Y/X=Xi) = 2 + 2 X ˆ ˆ ˆ SRF Yi 1 2 X i ˆ ˆ Yi = Yi = 1 + 2 Xi + ei 1 Theo Damodar N.Gujarati, Basic Econometrics-Third Edition, McGraw-Hill-1995, p16.
- cặp quan sát thứ i có giá trị tương ứng ( Xi , Yi ) ; i= 1,n .Ta phải tìm Y sao cho nó càng gần giá trị (Yi) có thể được tức phần dư 700 Hàm hồi quy tổng thể Y= Xi Yi= 1 + 2Xi + i 600 i 500 Tiêu dùng, Y (XD) E(Y/Xi)= 1 + 2Xi 400 300 Yi Y = E(Y/Xi) 200 100 0 Xi 0 100 200 300 400 500 600 700 800 900 Thu nhập khả dụng, X (XD) ˆ ˆ ˆ càng nhỏ càng tốt ei Yi Yi Yi 1 2 X i 2.1.2.Nội dung phân tích phần dư ei theo phương pháp bình phương nhỏ nhất OLS Từ trên ta có do ei; i= 1,n có th ể dương ,có thể âm do vậy cần phải tìm Yi sao cho tổng b ình phương của các phần dư đạt cực tiểu 2 n n ei2 Yi ˆ1 ˆ 2 X i => min i 1 i 1 Điều kiện để () đạt cực trị là: n e i2 n n i 1 2 Y X 2 e 0 i ˆ1 ˆ 2 i i (1) ˆ 1 i 1 i 1
- n e i2 n n i 1 2 Y X X 2 e X 0 i ˆ1 ˆ 2 i i i i (2) ˆ 2 i 1 i 1 Từ (3.7) và (3.8) chúng ta rút ra ˆ ˆ Y n1 2 X i i ˆ ˆ 1 X i 2 X i2 Y X i i Các phương trình ta được gọi là các phương trình chuẩn. Giải hệ phương trình chuẩn ta được ˆ ˆ 1 Y 2 X (3.11) Thay (3.9) vào (3.8) và biến đổi đại số chúng ta có n Y Y X i X i ˆ i 1 2 n X X 2 i i 1 Đặt x i X i X và y i Yi Y ta nhận đư ợc n y x i i ˆ i 1 (3.13) 2 n 2 x i i 1 a. Các tính chất của phần dư ei (1) Giá trị trung b ình của phần dư bằng 0: Ee i 0 n e Y (2) Các phần dư ei và Yi không tương quan với nhau: 0 i i i 1 n e X (3) Các phần dư ei và Xi không tương quan với nhau: 0 i i i 1 (4) Phần d ư ei là yếu tố quan trọng ,trong quá trình đo sự phù hợp của h àm hồi quy Từ RSS ( Residual sum of Squarses ) tổng b ình phương của tất cả các sai lệch
- giữa các giá trị quan sát Y và giá trị nhận được từ hàm hồi quy n n ˆ RSS e i2 = Yi ) 2 (Y i i 1 i 1 b. Phương sai của phần dư có thể được ước tính như sau s2 Chính là ước số 2. 2 .1.3.Nội dung phân tích phần dư theo phương pháp bình phương nhỏ nhất tổng quát Để giải đáp cho câu hỏi khi phương sai của sai số thay đổi ,thì phương pháp b ình phương nhỏ nhất tổng quát là cần thiết .Trư ớc khi đi vào nội dung cụ thể chúng ta trình bày phương pháp bình phương nhỏ nhất có trọng số a. phương pháp bình phương nhỏ nhất có trọng số Từ mô hình hai biến ˆ ˆ Yi = 1 + 2 Xi + ei Như ta đ ã biết ph ương pháp bình phương nhỏ nhất không có trọng số cực tiểu tổng b ình phương ph ần dư 2 n n ˆ ˆ 2 e Yi 1 2 X i => min i i 1 i 1 để thu được ước lượng Còn phương pháp bình phương nhỏ nhất có trọng số cực tiểu tổng bình phương các phần dư có trọng số
- 2 n n Wie Wi Yi ˆ *1 ˆ2 * X i 2 => min i i 1 i 1 Trong đó β1* , β1* là các ước lượng bình phương nhỏ nhất có trọng số ở đ ây các trọng số Wi là tính như sau 2 2 Wi = 1/ ( i ) , >0 i i b..Phương pháp bình phương nhỏ nhất tổng quát Từ mô hình 2 biến ˆ ˆ Yi = 1 + 2 Xi + Ui Đặt i2 w i2 2 , chia hai vế của (5,12) cho wi chúng ta có mô hình hồi quy Yi X 1 2 i i 1 wi wi wi wi Ta viết lại mô hình như sau Yi * 1 X 1*i 2 X 2i i* * Trong đó =1 ( i ) X 1i *= /i X X 1i 2i ei* = ei i / Để thu đươc ư ớc lượng bình phương nhỏ nhất tổng quát , ta cực tiểu hàm 2 n n ei*2 Yi ˆ *1 ˆ2 * X i ta sẽ thu được các ước lượng i 1 i 1 Lưu ý Trong quá trình phân tích phần dư đối với giá trị biến độc lập X hoặc giá trị dự đoán Y sẽ cho ta biết liệu phương sai của sai số có thay đổi hay không .Phương sai của phần dư được chỉ da bằng đọ rộng của biểu đồ phân giải củ a phần
- dư khi giảm hoặc tăng .Nếu độ rộng của biểu đồ rãi của phần dư tăng hoặc giảm .Khi X tăng th ì giá trị giả thiết về phương sai hắng số có thể không thõa mãn 2.1.4. phân tích phần dư trong hệ số đo sự phù hợp của hàm hồi quy mẫu Làm thế nào chúng ta đo lường mức độ phù h ợp của h àm hồi quy tìm được cho dữ liệu mẫu. Thước đo độ phù hợp của mô hình đối với dữ liệu là R2. Để có cái nhìn trực quan về R2, chúng ta xem xét đ ồ thị sau Y SRF Y Yi - Y i i Yi Y Yi Y - -Y i Y X X i Hình 3.5. Phân tích độ thích hợp của hồi quy Yi Y : biến thiên của biến phụ thuộc Y, đo lường độ lệch của giá trị Yi so với giá trị trung bình Y. ˆ Yi Y : biến thiên của Y được giải thích bởi h àm hồi quy ˆ e i Yi Yi : biến thiên của Y không giải thích được bởi h àm hồi quy hay sai số hồi quy. Trên mỗi Xi chúng ta kỳ vọng ei nhỏ nhất, hay phần lớn biến thiên của biến phụ thuộc được giải thích bởi biến độc lập. Nhưng một hàm hồi quy tốt phải có tính chất m ang tính tổng quát h ơn. Trong hồi quy tuyến tính cổ điển, người ta chọn tính chất tổng bình phương biến thiên không giải thích được là nhỏ nhất.
- Ta có ˆ Yi Y e i ˆ Y Y Y Y e i i ˆ yi yi ei ˆ Với y i Y i Y và yi Y Y ˆ n n n n Vậy y i2 y i2 e i2 2 y i e i (3.21) ˆ ˆ i 1 i 1 i 1 i 1 Số hạng cuố i cùng của (3.21) bằng 0. n n n Vậy y i2 y i2 e i2 ˆ i 1 i 1 i 1 n n n Đặt TSS y 2 , ESS y i2 và RSS e i2 ˆ i i 1 i 1 i 1 TSS(Total Sum of Squares): Tổng b ình phương biến thiên của Y. ESS(Explained Sum of Squares): Tổng bình phương phần biến thiên giải thích được bằng hàm hồi quy của Y. RSS(Residual Sum of Squares) : Tổng bình phương phần biến thiên không giải thích được bằng h àm hồi quy của Y hay tổng bình phương phần d ư.Ta có: TSS = ESS + RSS ESS RSS Đặt R 2 1 TSS TSS n 2 xi i 1 n 1 n n ˆ 2 x2 2 yi 2 i 2 ˆ 2 2 Sx 2 n ˆ ˆ 2 i 1 ni1 Rn 2 S2 y i2 y 2i y i2 y i1 i 1 i 1 n 1 n y x i i ˆ i 1 Mặt khác ta có 2 Vậy n 2 x i i 1
- 2 n x i yi R 2 n r2 i 1 X,Y n x i2 y i2 i 1 i 1 Vậy đối với hồi quy hai biến R2 là bình phương của hệ số tương quan. Tính chất của R2 (1) 0 ≤ R2 ≤1. Với R2=0 thể hiện X và Y độc lập thống kê. R2 =1 thể hiện X và Y phụ thuộc tuyến tính hoàn h ảo. (2) R2 không xét đ ến quan hệ nhân quả. 2.1.5. Một số dạng hàm thường được sử dụng a.Tuy ến tính trong tham số Trong mục 3.2.1 chúng ta đ ã đ ặt yêu cầu là để ước lượng theo phương pháp b ình phương tối thiểu thì mô hình hồi quy phải tuyến tính. Sử dụng tính chất hàm tuyến tính của các ph ân phối chuẩn cũng là phân phối chuẩn, dựa vào các giả định chặt chẽ và phương pháp bình phương tối thiểu, người ta rút ra các hàm ước lượng tham số hiệu quả và các trị thống kê kiểm định. Hồi quy tuyến tính chỉ yêu cầu tuyến tính trong các tham số, không yêu cầu tuyến tính trong biến số. 1 Mô hình Y 1 2 (1) X là mô hình tuyến tính trong các tham số nhưng phi tuyến theo biến số. 2 Mô hình Y 1 (1 1 )X (2) là mô hình phi tuyến trong các tham số nhưng tuyến tính trong biến số. Theo phương pháp tổng phần dư nhỏ nhất theo OLS ta xác đinh đư ợc các biến có ˆ ˆ trong mô hình chúng ta xác định đư ợc các tham số 1 và 2 của mô hình hồi quy cũng như các yếu tố khác có trong mô hình hồi quy
- 2 n n ei2 Yi Yˆi => min i 1 i 1 b. Một số mô hình thông dụng - Mô hình Logarit kép Mô hình logarit kép phù h ợp với dữ liệu ở nhiều lĩnh vực khác nhau. Ví dụ đường cầu với độ co dãn không đổi hoặc h àm sản xuất Cobb-Douglas. Mô hình đường cầu : Y 1 X e (3) 2 Không thể ước lượng mô hình (3 ) theo OLS vì nó phi tuyến trong tham số. Tuy nhiên nếu chúng ta lấy logarit hai vế thì ta được mô h ình ln( Y ) ln(1 ) 2 X (3) Đặt Y * ln( Y) và 1 ln(1 ) ta được mô hình * Y * 1 2 X (3.31) * Mô hình này tuyến tính theo tham số n ên có thể ước lượng theo OLS. Theo phương pháp tổng phần dư nhỏ nhất theo OLS ta xác đinh được các biến có trong mô h ình ˆ ˆ chúng ta xác định được các tham số 1 và 2 của mô hình hồi quy cũng như các yếu tố khác có trong mô hình hồi quy 2 n n ˆ 2 e => min Yi Yi i i 1 i 1 Chúng ta sẽ chứng minh đặc tính đáng lưu ý của mô hình này là độ co dãn cầu Y Y Y X theo giá không đổi. Định nghĩa độ co dãn: D X X Y X Y X Y X Lấy vi phân hai vế của ta có => D 2 2 X Y Y X Vậy độ co dãn của cầu theo giá không đổi.
- Y = 1X2 Y ln(Y) ln(Y) = ln( ) + ln(X) 0 X 0 ln(X) Hình . Chuyển dạng Log-log Tổng quát, đối với mô h ình logarit kép, hệ số ứng với ln của một biến số độc lập là độ co dãn của biến phụ thuộc vào biến độc lập đó. -Mô hình Logarit-tuyến tính hay mô hình tăng trưởng Gọi g là tốc độ tăng trưởng, t chỉ thời kỳ. Mô hình tăng trưởng như sau Yt (1 g ) t Y0 Lấy logarit hai vế của ln( Yt ) t ln(1 g) ln( Y0 ) Đặt Yt* ln( Yt ) , 1 ln( Y0 ) và 2 ln(1 g ) ta được mô hình h ồi quy Yt* 1 2 t Theo phương pháp tổng phần dư nhỏ nhất theo OLS ta xác đinh được các biến có ˆ ˆ trong mô hình chúng ta xác định đư ợc các tham số 1 và 2 của mô hình hồi quy cũng như các yếu tố khác có trong mô hình hồi quy 2 n n ei2 Yi Yˆi => min i 1 i 1 -Mô hình tuyến tính-Logarit (Lin-log) Y 1 2 ln( X)
- Mô hình này phù hợp với quan hệ thu nhập và tiêu dùng của một hàng hoá thông thường với Y là chi tiêu cho hàng hoá đó và X là thu nhập. Quan hệ n ày cho th ấy Y tăng theo X nhưng tốc độ tăng chậm dần. Y = 1 Y Y + ln(X) 0 X 0 ln(X) Hình . Chuyển dạng Lin-log Theo phương pháp tổng phần dư nhỏ nhất theo OLS ta xác đinh được các biến có ˆ ˆ trong mô hình chúng ta xác định đư ợc các tham số 1 và 2 của mô hình hồi quy cũng như các yếu tố khác có trong mô hình hồi quy 2 n n ˆ 2 e => min Yi Yi i i 1 i 1 -Mô hình nghịch đảo hay mô hình Hyperbol 1 Y 1 2 X Mô hình này phù hợp cho nghiên cứu đường chi phí đ ơn vị, đường tiêu dùng theo thu nh ập Engel hoặc đường cong Philip. Y Y X X Đường chi phí đơn vị Đường tiêu dùng Hình . Dạng hàm nghịch đảo
- Theo phương pháp tổng phần dư nhỏ nhất theo OLS ta xác đinh được các biến có ˆ ˆ trong mô hình chúng ta xác định đư ợc các tham số 1 và 2 của mô hình hồi quy cũng như các yếu tố khác có trong mô hình hồi quy 2 n n ei2 Yi Yˆi => min i 1 i 1 2.2. Mô hình hồi quy tuyến tính bộ 2.2..1 .Xây dựng mô hình Mô hình hồi quy bội cho tổng thể PRF EY X' s 1 2 X 2,i 3 X 3 ,i ... k X k ,i Với X2,i, X3,i,…,Xk,i là giá trị các biến độc lập ứng với quan sát i Hàm hồi quy mẫu ˆ ˆ ˆ ˆ Yi 1 2 X 2,i 3 X 3 ,i ... k X k ,i e i ˆˆ ˆ ˆ ˆ e i Yi Yi Yi 1 2 X 2,i 3X 3,i ... k X k ,i Theo phương pháp tối thiểu tổng bình phương phần dư cho kết quả ước lượng h iệu quả . Phương pháp bình phương tối thiểu 2 n n ˆˆ ˆ ˆ 2 e Yi 1 2 X 2,i 3 X 3,i ... k X k ,i i i 1 i 1 đạt cực tiểu. 2..2.2. Mô hình hồi quy 3 biến Hàm hồi quy tổng thể Yi 1 2 X 2,i 3 X 3,i i (4.7) Hàm hồi quy mẫu ˆˆ ˆ ˆ Yi 1 2 X 2,i 3 X 3,i e i (4.8)
- Kỳ vọng của sai số hồi quy bằng 0: E e i X 2,i , X 3,i 0 (1) Không tự tương quan: cove i , e j 0 , i≠j (2) Phương sai đồng nhất: varei 2 (3) Không có tương quan giữa sai số và từng Xm: cove i , X 2,i cove i , X 3,i 0 (4) Không có sự đa cộng tuyến hoàn hảo giữa X2 và X3. (5) Dạng hàm của mô hình được xác định một cách đúng đắn. (6) Để thu được các tham số của mô hình ta thực hiên phương pháp b ình phương be nhất OLS 2 n n ˆ ˆ ˆ 2 e Yi 1 2 X 2,i 3 X 3,i => min i i 1 i 1 Từ đây xác định ˆ ˆ ˆ 1 Y 2 X 2 3 X 3 (4.10) n n n n y i x 2,i x 2,i y i x 3,i x 2,i x 3,i 3 2 i 1 i 1 i 1 i 1 (4.11) ˆ 2 n n n x 2,i x 2,i x 2,i x 3,i 2 3 i 1 i 1 i 1 n n n n y i x 3,i x 2,i y i x 2,i x 2,i x 3,i 2 3 i 1 i 1 i 1 i 1 ˆ 2 n n n x 2,i x 2,i x 2,i x 3,i 2 3 i 1 i 1 i 1 Lưu ý Các tính chất phần dư trong mô hình này n e (4) 0 i i 1 (5) Các phần dư ei không tương quan với nhau X 2i và X 3i n gh ĩa là n n ei X 2 i e X 0 i 3i i 1 i 1 n e Yˆ ˆ (6) Các phần dư ei không tương quan với Yi : 0 ii i 1
- 2.2..3. Mô hình hồi quy K biến ˆ ˆ ˆ ˆ ˆ Từ mô hình hồi quy mẫu SRF : Yi 1 2 X 2,i 3 X 3 ,i ... k X k ,i ˆ ˆ ˆ ˆ Ta có mô hình hôi quy : Yi 1 2 X 2,i 3 X 3 ,i ... k X k ,i e i Nói cụ thể hơn Y1 = 1 + 2x21 + …+ kxk1 + 1 Y2 = 1 + 2x22 + …+ kxk2 + 2 Y3 = 1 + 2x23 + …+ kxk3 + 3 …………………………… Yn = 1 + 2x2n + …+ kxkn + n ˆ h ay Y = X +e trong đó e1 e e = 2 = Y - X .... e n các ước lượng OLS ta tìm được 2 n n ˆ ˆ ˆ ˆ 2 e Yi 1 2 X 2,i 3 X 3,i X ki => min i i 1 i 1 n 2 e là tổng b ình phương các phần dư RSS i i 1
- CHƯƠNG 3 Ứ NG DỤNG CỦA PHẦN DƯ TRONG PHÂN TÍCH HÀM HỒI QUY 3 .1 Phát hiện phương sai của sai số thay đổi Như chúng ta đ ã biết việc phát hiện da phương sai của sai số thay đổi rất khó .Do vậy để làm được điều này việc phân tích phần d ư có ý ngh ĩa cực kỳ quan trọng trong quá trình phát hiện phương sai của sai số thay đổi 3 .1.1 Xem xét đồ thị Đồ thị của sai số hồi quy , phần dư đối với giá trị của biến độc lập X hoặc giá trị dự đoán Y^ sẽ xho ta biết liệu phương sai của sai số thay đổi hay không .Phương sai của phần dư được chỉ ra bằng độ rộng của biểu đồ phân giải của phần dư khi X tăng lên .Nếu độ rộng của biểu đồ rải của phần dư tăng lên ho ặc giảm đi khi X tăng thì giả thiết về phương sai hằng số có thể không thõa mãn 2 1 Phần dư chuẩn hoá, s X 0 0 200 400 600 800 1000 1200 1400 -1 -2 Đồ thị phân tán phần dư ei theo Xi Theo các đồ thị trên thì khi giá trị dự báo Y tăng (hoặc khi X tăng) th ì ph ần dư có xu hướng tăng, hay mô h ình có phương sai của sai số thay đổi. Lưu ý : Người ta có thể vẽ đồ thị phần dư b ình phương đối với X hoặc Y
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận văn: Ứng dụng phương pháp phân tích tỷ số và phương pháp so sánh vào phân tích tài chính của Công ty may Đức Giang
99 p | 451 | 179
-
Tiểu luận chuyên đề: Phương pháp phân tích cực phổ - ĐH Vinh
14 p | 350 | 65
-
Báo cáo tổng hợp kết quả nghiên cứu khoa học cấp cơ sở: Nghiên cứu khai thác sử dụng một số phương pháp phân tích số liệu thống kê dựa trên phần mềm SPSS
125 p | 250 | 59
-
Báo cáo Đề tài nghiên cứu khoa học: Nghiên cứu phân tích và đánh giá các dữ liệu môi trường sử dụng phương pháp phân tích thống kê
22 p | 370 | 51
-
Báo cáo đề tài: Giới thiệu về phương pháp phân tích nước
17 p | 190 | 27
-
Báo cáo đề tài: Phương pháp phân tích Aflatoxin
18 p | 185 | 25
-
Luận văn Thạc sỹ Khoa học máy tính: Phương pháp phân tích trang văn bản dựa trên Tab-stop
68 p | 159 | 25
-
Luận văn Thạc sỹ Công nghệ thông tin: Tìm hiểu phương pháp phân tích bằng bên trong tài liệu ảnh
74 p | 140 | 24
-
Đề tài khoa học: Nghiên cứu khai thác sử dụng một số phương pháp phân tích số liệu thống kê dựa trên phần mềm SPSS
17 p | 83 | 19
-
Đề tài: Phương pháp phân tích địa hóa dầu khí
18 p | 127 | 18
-
Đề tài nghiên cứu khoa học cấp trường: Xây dựng quy trình xác nhận giá trị sử dụng của phương pháp phân tích hóa học trong lĩnh vực hoá môi trường và áp dụng tính toán đối với phương pháp quang phổ hấp thụ nguyên tử xác định hàm lượng Đồng trong mẫu nước
48 p | 62 | 8
-
Tóm tắt Luận văn Thạc sĩ Kế toán: Hoàn thiện nội dung, phương pháp phân tích tình hình tài chính tại Công ty cổ phần ống thép Việt Đức
18 p | 57 | 7
-
Luận văn Thạc sĩ Hóa học: Nghiên cứu phương pháp phân tích Acetaminophen trong bụi không khí tại khu vực dân cư Hà Nội bằng thiết bị sắc ký lỏng khối phổ (LC-MS)
69 p | 36 | 6
-
Luận án Tiến sĩ Kỹ thuật điện tử: Phát triển phương pháp phân tích định lượng tín hiệu iEMG chi trên hỗ trợ chẩn đoán bệnh lý
142 p | 90 | 5
-
Tóm tắt Luận văn Thạc sĩ Kế toán: Hoàn thiện nội dung và phương pháp phân tích tình hình tài chính tại Công ty cổ phần MCO Việt Nam
14 p | 63 | 4
-
Luận văn Thạc sĩ Khoa học: Nghiên cứu ô nhiễm một số kim loại nặng trong không khí tại thành phố Hà Nội bằng phương pháp phân tích PIXE
72 p | 27 | 4
-
Tóm tắt Luận án Tiến sĩ Hóa học: Nghiên cứu xây dựng và phát triển phương pháp phân tích một số chất kích thích tăng trưởng (auxin, gibberellin, cytokinin) trong rau xanh
28 p | 62 | 4
-
Luận văn Thạc sĩ Khoa học Lâm nghiệp: Ứng dụng phương pháp phân tích đa tiêu chuẩn (Multi Criteria Analysis = MCA) với sự trợ giúp của phần mềm SPSS để lựa chọn tập đoàn cây trồng cảnh quan đường phố cho thành phố Hải Dương
82 p | 28 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn