Đề thi học sinh giỏi môn Toán lớp 7 năm 2009-2010 - Phòng GD&ĐT Lập Thạch
lượt xem 56
download
Tham khảo đề thi học sinh giỏi môn Toán lớp 7 năm 2009 - 2010 của Phòng giáo dục và đào tạo Lập Thạch dành cho các em học sinh đang chuẩn bị cho kỳ kiểm tra, qua đó các em sẽ được làm quen với cấu trúc đề thi và củng cố lại kiến thức căn bản nhất.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi học sinh giỏi môn Toán lớp 7 năm 2009-2010 - Phòng GD&ĐT Lập Thạch
- PHÒNG GD& ĐT LẬP THẠCH ĐỀ KHẢO SÁT CHỌN HỌC SINH GIỎI MÔN TOÁN 7 Năm học 2009-2010 Thời gian 120phỳt Câu 1.(2đ). 7 48.530.28 530.7 49.210 a) Rút gọn biểu thức A= . 529.28.7 48 x y 5x 2 3 y 2 b) Cho . Tính giá trị biểu thức: B = . 3 5 10 x 2 3 y 2 Câu 2 (2đ) 5 x Cho biểu thức E = . Tính giá trị nguyên của x để: x2 a)Biểu thức E có giá trị nguyên. b)Có giá trị nhỏ nhất. Câu 3(2đ). Cho ABC cân tại A, điểm M là trung điểm của BC. Kẻ MH vuông góc với AB. Gọi E là một điểm thuộc đoạn thẳng AH. Trên cạnh AC lấy điểm F sao cho AEE = 2 EMH . Chứng minh FM là tia phân giác của EFC . Câu 4 (2đ). 1 1 1 2 2009 a)Tỡm x biết: ... 3 6 10 x( x 1) 2011 b)Cho biết (x-1)f(x) = (x+4).f(x+8) với mọi x. Chứng minh f(x) có ít nhất 2 nghiệm. Câu 5(2đ). a)Cho x,y,z 0 và x-y-z =0 z x y Tính giá trị biểu thức A = 1 1 1 . x y z c) Cho x,y,z thoả mãn x.y.z =1. 1 y 1 Chứng minh: 1 xy x 1 yz y 1 xyz yz y
- PHÒNG GD - ĐT ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN HUYỆN NGA SƠN NĂM HỌC 2009 – 2010 MÔN : TOÁN – LỚP 7 THỜI GIAN LÀM BÀI: 120 PHÚT Câu 1: (1.75 đ) 5 11 3 2 1 4 a) Tính : A = 3 2 3 5 5 42 5 3 b) Tìm x; y biết : (2x - 1)2008 + (y + 3.1)2008 = 0 Câu 2: (1.5 đ) Minh đem ra cửa hàng một số tiền vf nhẫm tính nếu dùng số tiền ấy có thể mua được 2kg nho; hoặc 3 kg lê hoặc 5 kg cam . Biết rằng giá tiền 2 kg lê thì đắt hơn 3 kg cam là 4 nghìn đồng. Tính giá tiền 1 kg mỗi loại. Câu 3: (1.5 đ) 219.273 15.49.94 Rút gọn : 69.210 1210 Câu 4: (1.25 đ) 1 1 1 1 4949 Chứng tỏ : ... 1.2.3 2.3.4 3.4.5 98.99.100 19800 Câu 5: (2.5 đ) Cho tam giác nhọn ABC; có đường cao AH. Trên nữa mặt phẳng bờ AC chứa điểm B vẽ tia AE AC và AE = AC. Trên nữa mặt phẳng bờ Ab chứa điểm C vẽ tia AF AB và AF = AB. a) C/M : EB = FC b) Gọi giao điểm của EF với AH là N. C/M : N là trung điểm của EF. Câu 6: (1.5 đ) Tìm các số tự nhiên abc có ba chữ số khác nhau sao cho : 3a + 5b = 8c. _ Hết _
- PHÒNG GD - ĐT ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN HUYỆN NGA SƠN NĂM HỌC 2009 – 2010 MÔN : TOÁN – LỚP 7 THỜI GIAN LÀM BÀI: 120 PHÚT Câu I: (2 đ) So sánh A và B biết : 4 A = 0,8.7 (0,8)2 .(1, 25.7 .1, 25) 47,86 5 5 (1, 09 0, 29). B= 4 8 (18,9 16, 65). 9 Câu II: (2.5 đ) 1) Tìm n N biết : 32 2n 4 45 x 40 x 35 x 30 x 2) Tìm x biết : a) 40 1963 1968 1973 1978 20 20 20 20 3 b) x ... 11.13 13.15 15.17 53.55 11 Câu III: (1.5 đ) 2x 3 y 4z Tìm x, y, z biết : và x + y + z = 49 3 4 5 Câu IV: (2 đ) 0 Cho ABC có Â = 60 ; BM, CN (M thuộc Ac và N thuộc AB) lần lượt là tia phân giác của ABC và ACB ; BM và CN cắt nhau tại I. a) Tính BIN b) Chứng minh : INM IMN Câu V: (2 đ) Tìm số tự nhiên nhỏ nhất có ba chữ số mà khi chia cho 11 dư 5 và chia cho 13 dư 8. _ Hết _
- PHÒNG GD - ĐT ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN HUYỆN NGA SƠN NĂM HỌC 2009 – 2010 MÔN : TOÁN – LỚP 7 THỜI GIAN LÀM BÀI: 120 PHÚT Câu I: (2 đ) 1 1 62 4 a) Tính : 3 .1,9 19, 5 : 4 . 3 3 75 25 b) Tìm x: 3 2 x1 24 42 22 1 Câu II: (2 đ) Học sinh một trường THCS có 4 khối lớp gồm khối lớp 6, lớp 7, lớp 8 và lớp 9. Số HS từng khối lớp tỷ lệ với 9,8,7 và 6. Biết rằng HS khối 9 ít hơn HS khối 7 là 70 HS. Tính số HS mỗi khối . Câu III: (2 đ) Cho ABC và A/ B / C / có AB = A/B/, AC = A/C/. M thuộc BC sao cho MC = MB, M/ thuộc B/C/ sao cho M/C/ = M/B/ và AM = A/M/. Chứng minh : ABC = A/ B / C / . Câu IV: (2 đ) a b ca 1) Biế . Chứng minh : a2 = b.c ab ca 1 1 1 1 1 1 1 1 2) Chứng minh rằng: 1 ... ... 2 3 4 2000 2001 2002 1002 2002 Câu V: (2 đ) Tìm giá trị nguyên của x và y thoã mãn : 3xy + x – y = 1 _ Hết _
- PHÒNG GIÁO DỤC YÊN ĐỊNH ĐỀ THI HỌC SINH GIỎI TOÁN 7 Câu 1 (2đ) Tìm x, y, z Z, biết a. /x/ + /-x/ = 3 - x x 1 1 b. 6 y 2 c. 2x = 3y; 5x = 7z và 3x - 7y + 5z = 30 Câu 2 (2đ) 1 1 1 1 a. Cho A = ( 2 1).( 2 1).( 2 1)...( 1) 2 3 4 100 2 1 Hãy so sánh A với 2 x 1 b. Cho B = Tìm x Z để B có giá trị là một số nguyên dương x 3 Câu 3 (2đ) Một người đi từ A đến B với vận tốc 4km/h và dự định đến B lúc 11 giờ 45 phút. Sau khi 1 đi được quãng đường thì người đó đi với vận tốc 3km/h nên đến B lúc 12 giờ trưa 5 Tính quãng đườngAB và người đó khởi hành lúc mấy giờ? Câu 4 (3đ) ˆ Cho ABC có A > 900. Gọi I là trung điểm của cạnh AC. Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối c với D. a. Chứng minh AIB CID b. Gọi M là trung điểm của BC; N là trung điểm của CD. CMR I là trung điểm của MN c. Chứng minh AIB < BIC d. Tìm điều kiện của ABC để AC CD Câu 5 (1đ) Tìm giá trị nhỏ nhất của biểu thức: 14 x P= ; x Z 4x Khi đó x nhận giá trị nguyên nào.
- PHÒNG GD& ĐT LẬP THẠCH ĐỀ KHẢO SÁT CHỌN HỌC SINH GIỎI MÔN TOÁN 7 Năm học 2009-2010 Thời gian 120phỳt Câu 1.(2đ). 7 48.530.28 530.7 49.210 a) Rút gọn biểu thức A= . 529.28.7 48 x y 5x 2 3 y 2 b) Cho . Tính giá trị biểu thức: B = . 3 5 10 x 2 3 y 2 Câu 2 (2đ) 5 x Cho biểu thức E = . Tính giá trị nguyên của x để: x2 a)Biểu thức E có giá trị nguyên. b)Có giá trị nhỏ nhất. Câu 3(2đ). Cho ABC cân tại A, điểm M là trung điểm của BC. Kẻ MH vuông góc với AB. Gọi E là một điểm thuộc đoạn thẳng AH. Trên cạnh AC lấy điểm F sao cho AEE = 2 EMH . Chứng minh FM là tia phân giác của EFC . Câu 4 (2đ). 1 1 1 2 2009 a)Tỡm x biết: ... 3 6 10 x( x 1) 2011 b)Cho biết (x-1)f(x) = (x+4).f(x+8) với mọi x. Chứng minh f(x) có ít nhất 2 nghiệm. Câu 5(2đ). a)Cho x,y,z 0 và x-y-z =0
- z x y Tính giá trị biểu thức A = 1 1 1 . x y z c) Cho x,y,z thoả mãn x.y.z =1. 1 y 1 Chứng minh: 1 xy x 1 yz y 1 xyz yz y
- PHÒNG GD - ĐT ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN HUYỆN NGA SƠN NĂM HỌC 2009 – 2010 MÔN : TOÁN – LỚP 7 THỜI GIAN LÀM BÀI: 120 PHÚT Câu 1: (1.75 đ) 5 11 3 2 1 4 a) Tính : A = 3 2 3 5 5 42 5 3 b) Tìm x; y biết : (2x - 1)2008 + (y + 3.1)2008 = 0 Câu 2: (1.5 đ) Minh đem ra cửa hàng một số tiền vf nhẫm tính nếu dùng số tiền ấy có thể mua được 2kg nho; hoặc 3 kg lê hoặc 5 kg cam . Biết rằng giá tiền 2 kg lê thì đắt hơn 3 kg cam là 4 nghìn đồng. Tính giá tiền 1 kg mỗi loại. Câu 3: (1.5 đ) 219.273 15.49.94 Rút gọn : 69.210 1210 Câu 4: (1.25 đ) 1 1 1 1 4949 Chứng tỏ : ... 1.2.3 2.3.4 3.4.5 98.99.100 19800 Câu 5: (2.5 đ) Cho tam giác nhọn ABC; có đường cao AH. Trên nữa mặt phẳng bờ AC chứa điểm B vẽ tia AE AC và AE = AC. Trên nữa mặt phẳng bờ Ab chứa điểm C vẽ tia AF AB và AF = AB. a) C/M : EB = FC b) Gọi giao điểm của EF với AH là N. C/M : N là trung điểm của EF. Câu 6: (1.5 đ) Tìm các số tự nhiên abc có ba chữ số khác nhau sao cho : 3a + 5b = 8c. _ Hết _
- . PHÒNG GD - ĐT ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN HUYỆN NGA SƠN NĂM HỌC 2009 – 2010 MÔN : TOÁN – LỚP 7 THỜI GIAN LÀM BÀI: 120 PHÚT Câu I: (2 đ) So sánh A và B biết : 4 A = 0,8.7 (0,8)2 .(1, 25.7 .1, 25) 47,86 5 5 (1, 09 0, 29). B= 4 8 (18,9 16, 65). 9 Câu II: (2.5 đ) 1) Tìm n N biết : 32 2n 4 45 x 40 x 35 x 30 x 2) Tìm x biết : a) 40 1963 1968 1973 1978 20 20 20 20 3 b) x ... 11.13 13.15 15.17 53.55 11 Câu III: (1.5 đ) 2x 3 y 4z Tìm x, y, z biết : và x + y + z = 49 3 4 5 Câu IV: (2 đ) Cho ABC có Â = 600; BM, CN (M thuộc Ac và N thuộc AB) lần lượt là tia phân giác của ABC và ACB ; BM và CN cắt nhau tại I. a) Tính BIN b) Chứng minh : INM IMN Câu V: (2 đ) Tìm số tự nhiên nhỏ nhất có ba chữ số mà khi chia cho 11 dư 5 và chia cho 13 dư 8. _ Hết _
- PHÒNG GD - ĐT ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN HUYỆN NGA SƠN NĂM HỌC 2009 – 2010 MÔN : TOÁN – LỚP 7 THỜI GIAN LÀM BÀI: 120 PHÚT Câu I: (2 đ) 1 1 62 4 a) Tính : 3 .1,9 19, 5 : 4 . 3 3 75 25 b) Tìm x: 3 2 x1 24 4 2 1 2 2 Câu II: (2 đ) Học sinh một trường THCS có 4 khối lớp gồm khối lớp 6, lớp 7, lớp 8 và lớp 9. Số HS từng khối lớp tỷ lệ với 9,8,7 và 6. Biết rằng HS khối 9 ít hơn HS khối 7 là 70 HS. Tính số HS mỗi khối . Câu III: (2 đ) Cho ABC và A/ B / C / có AB = A/B/, AC = A/C/. M thuộc BC sao cho MC = MB, M/ thuộc B/C/ sao cho M/C/ = M/B/ và AM = A/M/. Chứng minh : ABC = A/ B / C / . Câu IV: (2 đ) a b ca 1) Biế . Chứng minh : a2 = b.c ab ca 2) Chứng minh rằng: 1 1 1 1 1 1 1 1 1 ... ... 2 3 4 2000 2001 2002 1002 2002 Câu V: (2 đ) Tìm giá trị nguyên của x và y thoã mãn : 3xy + x – y = 1 _ Hết _
- PHÒNG GIÁO DỤC YÊN ĐỊNH ĐỀ THI HỌC SINH GIỎI TOÁN 7 Câu 1 (2đ) Tìm x, y, z Z, biết a. /x/ + /-x/ = 3 - x x 1 1 b. 6 y 2 c. 2x = 3y; 5x = 7z và 3x - 7y + 5z = 30 Câu 2 (2đ) 1 1 1 1 a. Cho A = ( 2 1).( 2 1).( 2 1)...( 1) 2 3 4 100 2 1 Hãy so sánh A với 2 x 1 b. Cho B = Tìm x Z để B có giá trị là một số nguyên dương x 3 Câu 3 (2đ) Một người đi từ A đến B với vận tốc 4km/h và dự định đến B lúc 11 giờ 45 phút. 1 Sau khi đi được quãng đường thì người đó đi với vận tốc 3km/h nên đến B lúc 12 giờ 5 trưa Tính quãng đườngAB và người đó khởi hành lúc mấy giờ? Câu 4 (3đ) ˆ Cho ABC có A > 900. Gọi I là trung điểm của cạnh AC. Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối c với D. a. Chứng minh AIB CID b. Gọi M là trung điểm của BC; N là trung điểm của CD. CMR I là trung điểm của MN c. Chứng minh AIB < BIC d. Tìm điều kiện của ABC để AC CD Câu 5 (1đ) Tìm giá trị nhỏ nhất của biểu thức: 14 x P= ; x Z 4x Khi đó x nhận giá trị nguyên nào.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ 10 đề thi học sinh giỏi môn Toán lớp 10 cấp tỉnh có đáp án
60 p | 427 | 38
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2019-2020 - Sở GD&ĐT Hà Nội
10 p | 43 | 4
-
Để thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020 có đáp án - Trường THPT Lê Quý Đôn, Đống Đa
7 p | 45 | 4
-
Đề thi học sinh giỏi môn Toán lớp 11 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Bình Định
1 p | 127 | 4
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020 có đáp án - Sở GD&ĐT Hà Tĩnh
8 p | 56 | 4
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp trường năm 2019-2020 có đáp án - Sở GD&ĐT Bắc Ninh
6 p | 15 | 3
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020-2021 - Sở GD&ĐT Khánh Hòa
1 p | 44 | 3
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2020-2021 - Trường THPT Chu Văn An, Hà Nội
2 p | 37 | 3
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp trường năm 2019-2020 - Trường THPT Tiên Du số 1, Bắc Ninh
6 p | 45 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Khánh Hòa
1 p | 29 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Hưng Yên
2 p | 60 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2020-2021 - Sở GD&ĐT Hải Dương
8 p | 33 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020 có đáp án - Sở GD&ĐT Bình Phước
10 p | 34 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp tỉnh năm 2019-2020 có đáp án - Sở GD&ĐT Bình Định
1 p | 83 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2020-2021 - Sở GD&ĐT Hà Nội
8 p | 63 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp thành phố năm 2019-2020 - Sở GD&ĐT Đà Nẵng
32 p | 32 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 cấp quốc gia năm 2020-2021 - Sở GD&ĐT An Giang
2 p | 53 | 2
-
Đề thi học sinh giỏi môn Toán lớp 12 năm 2020-2021 - Trường THCS chuyên Nguyễn Du, Đăk Lắk (Vòng 1)
1 p | 66 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn