ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN 1 MÔN: TOÁN
lượt xem 6
download
Tham khảo tài liệu 'đề thi khảo sát chất lượng lần 1 môn: toán', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN 1 MÔN: TOÁN
- ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN 1 Ngày thi 21/12/2011 MÔN: TOÁN Thời gian làm bài: 180 phút (không kể thời gian giao đề) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) m Câu I (2,0 điểm) Cho hàm số y x m x2 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số đ ã cho với m = 1. 2. Tìm m đ ể hàm số có cực đại và cực tiểu sao cho hai điểm cực trị của đồ thị hàm số cách đường thẳng d : x – y + 2 = 0 những khoảng bằng nhau. Câu II (2,0 điểm) cos 2 x. cos x 1 2 1 sin x . 1. Giải phương trình sin x cos x 7 x2 x x 5 3 2 x x2 2. Giải p hương trình (x ¡ ) 3 x 3 Câu III (1,0 điểm). Tính tích phân dx . 3. x 1 x 3 0 Câu IV (1,0 điểm). Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là các điểm lần lượt di động trên các cạnh AB, AC sao cho DMN ABC . Đặt AM = x, AN = y. Tính thể tích tứ diện DAMN theo x và y. Chứng minh rằng: x y 3xy. x 3 y 3 16 z 3 Câu V (1,0 điểm). Cho x, y, z 0 thoả mãn x+y+z > 0. Tìm giá trị nhỏ nhất của biểu thức P 3 x y z II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B). A. Theo chương trình Chuẩn: Câu VI.a (2,0 điểm) 1. Trong m ặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đ ường thẳng AB: x – 2 y + 1 = 0, p hương trình đường thẳng BD: x – 7 y + 14 = 0, đ ường thẳng AC đi qua M(2; 1 ). Tìm to ạ độ các đỉnh của hình chữ nhật. 2. Trong không gian to ạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng x 1 y 1 z 2 x2 y2 z d1: , d2: 2 2 3 1 1 5 Viết phương trình đ ường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d1 và d2. Câu VII.a (1,0 điểm). Tìm phần thực của số phức z = (1 + i)n , biết rằng n N thỏa mãn phương trình log4(n – 3 ) + log4(n + 9) = 3 B. Theo chương trình Nâng cao: Câu VI.b (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d 1: x + y + 5 = 0 và d2: x + 2y – 7 = 0 . Viết phương trình đường tròn có tâm C và tiếp xú c với đ ường thẳng BG. x 3 y 2 z 1 2. Trong không gian to ạ độ cho đ ường thẳng d : và mặt phẳng (P): x + y + z + 2 = 0. 1 2 1 Gọi M là giao điểm của d và (P). Viết phương trình đường thẳng nằm trong mặt phẳng (P), vuông góc với d đồng thời thoả mãn kho ảng cách từ M tới b ằng 42 . 1 log 1 y x log 4 y 1 Câu VII.b (1,0 điểm). Giải hệ phương trình 4 ( x, y ¡ ) 2 2 x y 25 -------------------Hết ------------------- - Đề & đáp án thi Đại học - Trường THPT Thuận Thành s ố I 1
- SƠ LƯỢC ĐÁP ÁN VÀ BIỂU ĐIỂM ĐỀ THI KHẢO SÁT LẦN 2 - 2010 Đáp án gồm 06 trang Câu Nội dung Điểm I 2,0 1 1,0 1 Với m =1 thì y x 1 x2 0.25 a) Tập xác định: D ¡ \ 2 b) Sự biến thiên: x2 4x 3 x 1 1 y' 1 , y' 0 . 2 2 x 2 x 2 x 3 0.25 lim y , lim y , lim y ; lim y , x 2 x 2 x x lim y ( x 1) 0 ; lim y ( x 1) 0 x x Suy ra đồ thị hàm số có tiệm cận đứng x = 2, tiệm cận xiên y = x – 1. Bảng biến thiên x + - 1 2 3 – y’ + + 0 – 0 + + 1 y 0.25 3 - - Hàm số đồng biến trên mỗi khoảng ;1 , 3; ; hàm số nghịch biến trên mỗi khoảng 1;2 , 2;3 Cực trị: Hàm số đạt giá trị cực trị: yCĐ = 1 tại x = 1; yCT = 3 tại x = 3. c) Đồ thị: 0.25 - Đề & đáp án thi Đại học - Trường THPT Thuận Thành s ố I 2
- 2 1.0 m Với x 2 ta có y’ = 1- ; ( x 2) 2 0.25 Hàm số có cực đại và cực tiểu phương trình (x – 2)2 – m = 0 (1) có hai nghiệm p hân biệt khác 2 m 0 x 2 m y1 2 m 2 m Với m > 0 p hương trình (1) có hai nghiệm là: 1 0.25 x2 2 m y 2 2 m 2 m Hai điểm cực trị của đồ thị hàm số là A( 2 m ; 2 m 2 m ) ; B( 2 m ; 2 m 2 m ) Khoảng cách từ A và B tới d bằng nhau nên ta có phương trình: 0.25 2m m 2m m m 0 m 2 0.25 Đối chiếu điều kiện thì m = 2 thoả mãn bài toán Vậy ycbt m = 2 . II 2.0 2 cos x. cos x 1 2 1 sin x . Giải phương trình 1 1.0 sin x cos x ĐK: sin x cos x 0 0.25 Khi đó PT 1 sin x cos x 1 2 1 sin x sin x cos x 2 1 sin x 1 cos x sin x sin x.cos x 0 0.25 1 sin x 1 cos x 1 sin x 0 sin x 1 (thoả mãn đ iều kiện) 0.25 cos x 1 x 2 k 2 k, m Z x m2 0.25 k, m Z k 2 và x m 2 Vậy phương trình đã cho có nghiệm là: x 2 7 x2 x x 5 3 2x x2 2 1.0 (x ¡ ) Giải phương trình: 3 2 x x 2 0 PT 0.25 2 2 7 x x x 5 3 2 x x 3 2 x x 2 0 0.25 x x 5 2( x 2) 3 x 1 2 x 0 x 0 0.25 x 1 x 16 0 2 x2 x 5 2. x x 1 0.25 Vậy phương trình đ ã cho có một nghiệm x = - 1. - Đề & đáp án thi Đại học - Trường THPT Thuận Thành s ố I 3
- 3 x 3 1.0 Tính tích phân dx . 3. III x 1 x 3 0 x 0 u 1 x 1 u 2 1 x 2udu dx ; đổi cận: Đặt u = 0.25 x 3 u 2 3 2 2 2 2u 3 8u x3 1 0.25 Ta có: 3 x 1 x 3dx u 2 3u 2du (2u 6)du 6 u 1du 0 1 1 1 2 2 0.25 1 6 ln u 1 1 u 2 6u 3 0.25 3 6 ln 2 IV 1.0 D Dựng DH MN H Do DMN ABC DH ABC mà D. ABC là tứ diện đều nên H là tâm tam giác đều ABC . B C 0.25 N H M A 2 3 6 2 2 2 Trong tam giác vuông DHA: DH DA AH 1 3 3 0.25 1 3 AM . AN .sin 600 Diện tích tam giác AMN là S AMN xy 2 4 1 2 Thể tích tứ diện D.AMN là V S AMN .DH xy 0.25 3 12 1 1 1 xy.sin 600 x. AH .sin 300 y. AH .sin 30 0 Ta có: S AMN S AMH S AMH 2 2 2 0.25 x y 3xy. V 1.0 3 x y 2 (biến đổi tương đương) ... x y x y 0 Trước hết ta có: x 3 y 3 0.25 4 3 3 64 z 3 64 z 3 x y a z 3 1 t 64t 3 Đặt x + y + z = a. Khi đó 4P 3 3 a a 0.25 z (với t = , 0 t 1 ) a Xét hàm số f(t) = (1 – t)3 + 64t3 với t 0;1 . Có 1 2 f '(t ) 3 64t 2 1 t , f '(t ) 0 t 0;1 0.25 9 Lập bảng biến thiên 64 16 Minf t GTNN của P là đạt đ ược khi x = y = 4z > 0 0.25 81 81 t 0;1 - Đề & đáp án thi Đại học - Trường THPT Thuận Thành s ố I 4
- VI.a 2.0 1 1.0 Do B là giao của AB và BD nên toạ độ của B là nghiệm của hệ: 21 x 5 x 2 y 1 0 21 13 0.25 B ; x 7 y 14 0 y 13 5 5 5 Lại có: Tứ giác ABCD là hình chữ nhật nên góc giữa AC và AB b ằng góc giữa AB và uuur uuur uuu r BD, kí hiệu n AB (1; 2); nBD (1; 7); n AC ( a; b) (với a2+ b2 > 0) lần lượt là VTPT của các uuu uuu rr uuu uuu rr đ ường thẳng AB, BD, AC. Khi đó ta có: cos n AB , nBD cos nAC , n AB 0.25 a b 3 a b 7 a 8ab b 0 2 2 2 2 a 2b a b 2 7 - Với a = - b. Chọn a = 1 b = - 1. Khi đó Phương trình AC: x – y – 1 = 0, x y 1 0 x 3 A = AB AC nên to ạ độ điểm A là nghiệm của hệ: A(3; 2) x 2 y 1 0 y 2 Gọi I là tâm hình chữ nhật thì I = AC BD nên toạ độ I là nghiệm của hệ: 7 x 2 x y 1 0 7 5 0.25 I ; x 7 y 14 0 y 5 2 2 2 14 12 Do I là trung đ iểm của AC và BD nên to ạ độ C 4;3 ; D ; 5 5 - Với b = - 7a (lo ại vì AC không cắt BD) 0.25 2 1.0 x 1 2t x 2 m Phương trình tham số của d1 và d2 là: d1 : y 1 3t ; d 2 : y 2 5m 0.25 z 2 t z 2 m Giả sử d cắt d 1 tại M(-1 + 2t ; 1 + 3t ; 2 + t) và cắt d2 tại N(2 + m ; - 2 + 5m ; - 2m) uuuu r 0.25 MN (3 + m - 2 t ; - 3 + 5 m - 3t ; - 2 - 2m - t). 3 m 2t 2 k uuuur uu r uu r Do d (P) có VTPT nP (2; 1; 5) nên k : MN k n p 3 5m 3t k có nghiệm 0.25 2 2m t 5k m 1 Giải hệ tìm được t 1 x 1 2t 0.25 Khi đó điểm M(1; 4; 3) Phương trình d : y 4 t tho ả mãn bài toán z 3 5t - Đề & đáp án thi Đại học - Trường THPT Thuận Thành s ố I 5
- Tìm phần thực của số phức z = (1 + i)n , b iết rằng n N thỏa mãn phương trình VII.a 1.0 log4(n – 3) + log4(n + 9) = 3 n N Điều kiện: n 3 0.25 Phương trình log4(n – 3 ) + log4(n + 9) = 3 log4(n – 3)(n + 9) = 3 n 7 (thoả mãn) (n – 3)(n + 9) = 43 n2 + 6 n – 91 = 0 n 13 (không thoả mãn) 0.25 Vậy n = 7. 3 2 Khi đó z = (1 + i)n = (1 + i)7 = 1 i . 1 i 1 i .(2i) 3 (1 i ).( 8i) 8 8i 0.25 Vậy phần thực của số phức z là 8. 0.25 VI.b 2.0 1 1.0 Giả sử B ( xB ; yB ) d1 xB yB 5; C ( xC ; yC ) d 2 xC 2 yC 7 xB xC 2 6 0.25 Vì G là trọng tâm nên ta có hệ: yB yC 3 0 Từ các phương trình trên ta có: B(-1;-4) ; C(5;1) 0.25 uuu r uuur Ta có BG (3; 4) VTPT nBG (4; 3) nên phương trình BG: 4x – 3 y – 8 = 0 0.25 9 81 phương trình đ ường tròn: (x – 5)2 +(y – 1)2 = Bán kính R = d(C; BG) = 0.25 5 25 2 1.0 Ta có phương trình tham số của d là: x 3 2t x 3 2t y 2 t y 2 t toạ độ điểm M là nghiệm của hệ (tham số t) 0.25 z 1 t z 1 t x y z 2 0 M (1; 3; 0) uur uu r Lại có VTPT của(P) là nP (1;1;1) , VTCP của d là ud (2;1; 1) . uur uu uu rr Vì nằm trong (P) và vuông góc với d nên VTCP u ud , nP (2; 3;1) uuuu r Gọi N(x; y; z) là hình chiếu vuông góc của M trên , khi đó MN ( x 1; y 3; z ) . uuuu r uu r 0.25 Ta có MN vuông góc với u nên ta có phương trình: 2x – 3 y + z – 11 = 0 x y z 2 0 Lại có N (P) và MN = 42 ta có hệ: 2 x 3 y z 11 0 ( x 1)2 ( y 3)2 z 2 42 Giải hệ ta tìm đ ược hai điểm N(5; - 2; - 5 ) và N(- 3; - 4; 5) 0.25 x 5 y2 z 5 Nếu N(5; -2; -5) ta có pt : 3 2 1 0.25 x3 y4 z 5 Nếu N(-3; -4; 5) ta có pt : 3 2 1 - Đề & đáp án thi Đại học - Trường THPT Thuận Thành s ố I 6
- 1 VII.b 1.0 log 1 y x log 4 y 1 Giải hệ phương trình 4 ( x, y ¡ ) 2 2 x y 25 y x 0 Điều kiện: 0.25 y 0 yx yx 1 1 log 4 y x log 4 y 1 log 4 y 1 y 4 Hệ phương trình 0.25 x 2 y 2 25 x 2 y 2 25 x 2 y 2 25 x 3y x 3y x 3y 2 2 2 25 0.25 2 2 x y 25 9 y y 25 y 10 15 5 x; y (không thỏa mãn đk) ; 10 10 15 5 0.25 (không thỏa mãn đk) x; y ; 10 10 Vậy hệ phương trình đã cho vô nghiệm. Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được điểm từng phần như đáp án quy định. - Đề & đáp án thi Đại học - Trường THPT Thuận Thành s ố I 7
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ đề thi khảo sát chất lượng đầu năm môn Ngữ Văn lớp 8 năm 2017
16 p | 1345 | 50
-
Đề thi khảo sát chất lượng đầu năm môn Toán lớp 9 - Trường THCS Kim Đồng năm 2011 - 2012
1 p | 675 | 37
-
Đề thi khảo sát chất lượng HSG năm học 2014 - 2015 môn Toán 10
1 p | 188 | 29
-
Đề thi khảo sát chất lượng học sinh yếu lớp 1 môn tiếng Việt - Trường tiểu học Thọ Lộc năm 2010
2 p | 238 | 18
-
Đề thi Khảo sát chất lượng lớp 12 - Lần II năm 2014 Môn: Hóa học - THPT chuyên ĐH Vinh
5 p | 291 | 16
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Ngữ văn trường THCS Lê Hồng Phong
2 p | 873 | 13
-
Đề thi khảo sát chất lượng đầu năm lớp 8 năm 2017-2018 môn Toán trường THCS Vĩnh Tường
1 p | 266 | 12
-
Đề thi khảo sát chất lượng Vật lý lớp 12 dự thi Đại học 2014 - Trường THPT Chuyên KHTN
6 p | 175 | 10
-
Đề thi khảo sát chất lượng Hóa học lớp 12 dự thi Đại học 2014 - Trường THPT Chuyên KHTN
5 p | 166 | 9
-
Đề thi Khảo sát chất lượng lớp 12: Lần II năm 2011 môn Toán - THPT chuyên ĐH Vinh
0 p | 178 | 8
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 478) - THPT chuyên ĐH Vinh
4 p | 134 | 8
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Ngữ Văn trường Tiểu học và Trung học cơ sở Sao Việt
4 p | 260 | 7
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Toán trường THCS Tiên Động
3 p | 320 | 7
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 209) - THPT chuyên ĐH Vinh
5 p | 162 | 6
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 485) - THPT chuyên ĐH Vinh
5 p | 136 | 6
-
Đề thi khảo sát chất lượng đầu năm lớp 12 năm học 2017-2018 môn Tiếng Anh trường THPT Nguyễn Viết Xuân
5 p | 132 | 4
-
Đề thi khảo sát chất lượng đầu năm lớp 12 năm học 2017-2018 môn Sinh trường THPT Nguyễn Thị Giang
4 p | 62 | 3
-
Đề thi khảo sát chất lượng đầu năm môn Toán lớp 9 năm học 2019-2020 – Trường THCS Ngô Gia Tự
1 p | 39 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn